• Title/Summary/Keyword: Discrete Time Control

Search Result 871, Processing Time 0.036 seconds

Characteristics of One Step Advanced Discrete Time D-Control with Time Delay in Noncolocated Flexible System (비병치 유연계의 시간지연 이산제어에서 한스텝선행 미분제어기의 특성)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1678-1685
    • /
    • 1993
  • This paper considers a time delay control of noncolocated flexible mechanical systems in discrete time domain. A stability criterion suggested in the previous paper is,extended in the consideration of infinite mode property of flexible systems and finite control sampling frequency. Based on the stability criterion, the one step advanced discrete time derivative control is suggested, which can stabilize infinite number of modes of a flexible system. The sensitivity analysis shows the robustness of the one step advanced control to the system parameter uncertainties and time delay errors. Application to a simply supported beam verifies the extended stability criterion and the effectiveness of the one step advanced D-control.

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

A new discrete-time robot model and its validity test

  • Lai, Ru;Ohkawa, Fujio;Jin, Chunzhi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.807-810
    • /
    • 1997
  • Digital control of robot manipulator employs discrete-time robot models. It is important to explore effective discrete-time robot models and to analyze their properties in control system designs. This paper presents a new type discrete-time robot model. The model is derived by using trapezoid rule to approximate the convolution integral term, then eliminating nonlinear force terms from robot dynamical equations. The new model obtained has very simple structure, and owns the properties of independence to the nonlinear force terms. According to evaluation criteria, three aspects of the model properties: model accuracy, model validity range and model simplicity are examined and compared with commonly used discrete-time robot models. The validity of the proposed model and its advantages to control system designs are verified by simulation results.

  • PDF

Discrete-Time Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2011
  • In the real-field of control cases for robot manipulators, there always exists a modeling error, which results the model has the uncertainties in its parameters and/or structure. In many modem applications, digital computers are extensively used to implement control algorithms to control such systems. The discretization of the nonlinear dynamic equations of such systems results in a complicated discrete dynamic equations. Therefore, it will be difficult to design a discrete-time controller to give good tracking performances in the presence of certain uncertainties. In this paper, a discrete-time sliding mode control algorithm for nonlinear and time varying robot manipulators with uncertainties is presented. Sufficient conditions for guaranteeing the convergence of the discrete-time SMC system are derived. As example simulations, the proposed SMC algorithm is applied to a two-link robotic manipulator with unknown dynamics. The results of the simulation indicate that the developed control scheme is effective in manipulators and electro-mechanical system control.

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

MULTIPLE VALUED ITERATIVE DYNAMICS MODELS OF NONLINEAR DISCRETE-TIME CONTROL DYNAMICAL SYSTEMS WITH DISTURBANCE

  • Kahng, Byungik
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.17-39
    • /
    • 2013
  • The study of nonlinear discrete-time control dynamical systems with disturbance is an important topic in control theory. In this paper, we concentrate our efforts to multiple valued iterative dynamical systems, which model the nonlinear discrete-time control dynamical systems with disturbance. After establishing the validity of such modeling, we study the invariant set theory of the multiple valued iterative dynamical systems, including the controllability/reachablity problems of the maximal invariant sets.

Identification and Control for Nonlinear Discrete Time Systems Using an Interconnected Neural Network

  • Yamamoto, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.994-998
    • /
    • 2005
  • A new control method, called a simple model matching, has been recently developed by the author. This is very simple and be applied for linear and nonlinear discrete time systems with/without time lag. Based on this formulation, identification is examined in this paper using an interconnected neural network with the EBP-EWLS learning algorithm. With this result, a control method is also presented for a nonlinear discrete time system.

  • PDF

Analysis of Discrete-Time Disturbance Observer for Second-Order Systems (2차 시스템에 대한 이산시간 외란 관측기의 분석)

  • 양광진;최영진;정완균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.425-434
    • /
    • 2003
  • The disturbance observer(DOB) has been widely used in high speed and high precision motion control applications and the characteristics of DOB have been investigated in depth. Though most of DOB's have been implemented as the discrete-time form in digital devices, we are still short of the researches on discrete-time DOB (DDOB) in spite of rich references on continuous-time DOB. In this paper, we discuss about the disturbance rejection property and measurement noise effect of discrete-time DOB. Especially, we will focus on revealing the role of sampling time in designing the discrete-time DOB and show the validity of analysis through simulations and experiments for optical disk drive systems.

A design of discrete time nonlinear control system with disturbances using model following method

  • Zhang, Yuan-Sheng;Okubo, Shigenori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.239-242
    • /
    • 1996
  • A model following control system(MFCS) can give general output signals following desired ones. In previous studies, a method of nonlinear MFCS was proposed by S.Okubo[1]. In this paper, the method of nonlinear MFCS will be extended to discrete time nonlinear systems. It is easy to extend the method to discrete time systems. But in the case .gamma.=1 discrete time systems, the proof becomes difficult, because the transfer function from f(v(k)) to v(k) can't be a positive real function. In this case, to ensure that internal states are stable, a new criterion is proposed.

  • PDF