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Abstracts Digital control of robot manipulator employs discrete-time robot models. It is important to explore effective
discrete-time robot models and to analyze their properties in control system designs. This paper presents a new type
discrete-time robot model. The model is derived by using trapezoid rule to approximate the convolution integral term, then
eliminating nonlinear force terms from robot dynamical equations. The new model obtained has very simple structure, and
owns the properties of independence to the nonlinear force terms. According to evaluation criteria, three aspects of the
model properties: model accuracy, model validity range and model simplicity are examined and compared with commonly
used discrete-time robot models. The validity of the proposed model and its advantages to control system designs are

verified by simulation results.
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1. INTRODUCTION

The dynamical equations of robot manipulator have
been well known, and a lot of systematic methods are
developed to derive them [1]. Since the robot dynam-
ics are expressed as nonlinear, highly coupled multi-
variable differential equations, it is mandatory to use
digital computer in dynamic simulations and in control
system designs. Traditionally, control schemes are de-
signed 1n continuous time domain, then implemented
on digital computer with an assumption of a very high
sampling rate [2, 3]. However, the properties of a con-
tinuous system are often quite different with its "equiv-
alent” system in discrete-time domain, e.g. the stabil-
ity of the system may be deteriorated after discretiza-
tion. It is therefore more reasonable to explore com-
puter oriented discrete-time robot models and design
digital control systems which can be realized directly
on computers.

There are several papers discussing methods for ob-
taining discrete-time robot model [4, 5, 6, 7]. Neuman
and Tourassis design their model to guarantee conserva-
tion of energy at each sampling instant. Nicosia et al.
derive their models by applying numerical discretiza-
tion techniques to the minimization problem of the La-
grange functional. The discrete-time models they ob-
tained have similar formulation with the robot differen-
tial equation, in which the inertial term, nonlinear force
terms and the input force term are included. Therefore,
these models are still complex in structure and heavy
in computation.

Recently, Ohkawa proposes a discrete-time approx-
imated model for mechanical system [8]. This study
extends that work to robot manipulators. The ob-
tained discrete-time robot model has very simple for-
mulation, and structurally independent to the nonlin-
ear force terms of the robot dynamical equations.

The outline of this paper is as follows: The derivation

of the new discrete-time robot model is given in section
2. Section 3 discusses robot model validity issues. Ac-
cording to the requirement of robot control systems,
model validity criteria are chosen, corresponding simu-
lation schemes are devised, and sirmmulation results are
discussed. Section 4 provides a summary.

2. A NEW DISCRETE-TIME ROBOT
MODEL

In this section, we present the derivation of the new
discrete-time robot model.

The n-link robot dynamical equation can be ex-
pressed as:

M@+ V(0,0 +GO)+FO) =T (1)

where 0 € R" is the generalized joint position vector,
T € R" is the generalized input force vector, M () €
RM*™ s the positive definite inertial matrix, V(8,0) €
™ is a vector representing Coriolis/centrifugal force
effect, G(#) € R™ is gravity vector, while F(#) € R"
represents the friction force vector.

Define H(8,6) as nonlinear force term, which in-
cludes Coriolis/centrifugal force, gravity and friction
force terms.

H(6,0) = V(8,6) + G(8) + F(6) ()
Equation (1) can be rewritten as:
M(6)0 + H(6,0) =~ (3)

Represent (3) into state-space formulation as:
dalét)y_ oI 6(t)
dl ey | L0 0 6(t)
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The state variables of the equation are generalized
joint position @, and joint velocity , whereas [ € R"*"
is an identity matrix.

Integrating both sides of (4), we get:

-2
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] M~YO)[r(t) = H(8,0)]dt (5)

0
where A = [0 0
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Therefore, (5) becomes:
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Using notation S to represent the integration part
in (7) as:
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Since it is difficult to calculate the exact value of §
for arbitrary H(6,8) , we use trapezoid rule to do the
approximation:

]M*MMdO—HwﬁHﬁ (8)

T
s:/o s(t) ~ % [5(0) + s(T) ] 9)

Therefore, & can be calculated and approximated
using trapezoid rule as:

[T {—tM Y B)[r(t) — H(0,6)]}dt

* T M) - He b

[ —T2M=Y(6(T))[r(0) — H(8(T),6(T))]
Z{M~1(9(T))[7(0) — H(8(T),(T))]
+M1(6(0))[r(0) — H(8(0),6(0))]}

(10)

X

Note that the control input 7(t) is piece-wise constant.

Substitute (10) for (7), and replace time instant 0 by
&, T by (k + 1) respectively. Then following difference
equations are obtained:

8(k + 1) = 0(k) + TH(k)

T2 -
+ = MNO(k))[r(k) — H(6(k),6(k))]

: (11)

G(k-+1) = (k)42 M= O(R) [ ()~ H(O(k). 6(8)]

3 MO 1) (R~ HOk+1), 608+ 1)
(12)
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By substituting (11) for (12), we eliminate the non-
linear forces term H from above equations:

= MO0k +1)=2T0(k)=0(k— D] +7(k=1) = 7(k)
(13)

Obviously, (13) has the novel structure to commonly
used robot models: firstly, it excludes the nonlinear
force terms from robot dynamical equation; secondly,
the observation of the velocity signal is necessary.

Remark 1. The fundamental characteristics of the
new discrete-time robot model of (13) is its eliminating
the nonlinear force terms from robot equations. This is
realized by using trapezoid rule to approximate the in-
tegration part in robot equation, and then successfully
eliminating the nonlinear force term H(4,6) . The ob-
tained model has very simple structure. This assumes
the control algorithms based on this model can also be
simplified.

Remark 2. From (12) we could see, the velocity sig-
nal includes the information of nonlinear forces, there-
fore, if only we could observe output velocity, or approx-
imately calculate the velocity from position signals, the
effect of nonlinear forces are considered implicitly in the
model. But it saves tedious computation for nonlinear
force terms.

3. MODEL VALIDITY TEST

In this section, we verify the validity of the discrete-
time robot model proposed in the preceding section by
computer simulation.

A 2-link vertical manipulator with revolution joints
is considered. Its physical parameters are compiled in
Table 1.

TABLE 1. Physical parameters of 2-link manipulator

[ manipulator [ Link 1] Link 2
mass (kg) 3 0.6
length (m) 0.35 0.28

inertia(kg-m) 0.262 | 0.0313
friction coefficient 0.2 0.2

Comparisons were carried out among Lagrange for-
ward model, Nicosia’s backward model [5] and the pro-
posed discrete-time robot model of (13).

Lagrange forward model can be expressed as:

ar (oL 2= 200k + 1)+ 0(k)

I+ H(k) = (k)

T?
(14)
Nicosia's backward model can be written as:
Mo+ 1) ZEED =00 yp(p L=k~ 1)
+ H(k) = (k) (15)

From the control design point of view, three aspects
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of the model properties are considered as evaluation
criteria.

3.1 Model Accuracy

To examine the model accuracy, we input refer-
ence signals to both continuous time robot model and
discrete-time robot modeld, and then measure their
output errors to see how good the fit is. Simulation
scheme is described in Fig.1.

u(t) q(t)
CONTINUOUS ,
t ~ MODEL
u [ piscreTE | a e(k)
e MODEL =

Fig.1 Simulation I — Model Accuracyd

Sampling period is T = 0.01s. The measurement of
the velocity signal is assumed available. First, we use
sine wave as input signal 7 (¢) = 5sin3t, ™(t) = 0 .
The output errors of joint 1 are shown in Fig.2. From
simulation results, we can see the proposed discrete-
time model shows better accuracy.

Input (Nm)

Joint1 err (rad)

- - - Lagrange model Nicosia model
—— Proposed model

Fig.2 Output error under sine input (T=0.01s}

tnput (Nm)

Joint1 err {rad)

0% g8 a5 25
- - - Lagrange model Nicosia model

—-— Proposed model

Fig.3 Output error under square input (T=0.01s)
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Then, we use square wave as input signal, as shown
in Fig.3. It can be seen that since the new model mak-
ing use of the velocity signal directly, even the input
signal changes rapidly, the output of the new model
can still follow the continuous model in very small er-
ror. Therefore, we could say if the output velocity can
be observed correctly, the new model shows better ac-
curacy than other commonly used robot models.

3.2 Model Validity Range Towards T

It is neither easy nor necessary to derive universally
valid robot models. The validity of a discrete-time
robot model depends very much on the sampling pe-
riods. To what extent the sampling period limits the
use of a discrete-time robot model has to be considered.

If a discrete-time robot model can endure relatively
greater sampling periods, and still work well, we say
that model has broader validity range towards sampling
period T', or in other words, it owns larger stable region
to the sampling periods.

In stead of making a mathematical analysis, we de-
vise a sirnulation scheme, as shown in Fig.4, to carry
out the examination. In Fig.4, the discrete-time robot
model is taken as an adaptive observer. Parameters
of the model are adjusted by adaptive algorithms. In-
creasing sampling period until the output error e(k)
exceeds a certain bound ey;,,, the maximum sampling
period T,,4, could be determined.

ug(ky A4k

ROBOT

/

DISCRETE TIME
MODEL

-

ADAPTATION
ALGORITHM

uk) +

q k) ek

Fig.4 Simulation II — Adaptive Observer

Table 2 shows the maximum of samplhing period T},,4,
each model can work with. The output error limita-
tions are set to be epm1 = l(rad) and ejma = o©

respectively.
TABLE 2 Tmar
[ Model\ T(s) [ Tmaxi (eimi) | Tmax2 (erim2) |
Lagrange 0.10 0.10
Nicosia 0.12 0.14
Proposed 0.16 1 0.40

It can be seen that the proposed model can en-
dure greater sampling time, which implies that the
new model has relatively broader validity range towards
sampling periods.



3.3 Model Simplicity

Discrete-time robot models can also be expressed as:
rk)=Yk+1) X (16)

where where Y (k+1) € R"*™ is a regressive matrix
of known function of joint positions and velocities; ¥ €
R™ is a vector of physical parameters.

For a 2-link manipulator, Y (k) and T of the pro-
posed model can be calculated as:

_ | Yu(k) Yio(k) Yis(k) Yia(k)
YO = | vtk Yook Yasth) Yaulh) | (17
Yi(k) = 61(k)—2T6:(k — 1) = 61(k — 2)
Yio(k) = [01(k) —2T6,(k — 1) — 0:(k —2)] -
cos(Ba2(k — 1))
Yis(k) = 6y(k) — 2T0(k — 1) — fa(k — 2)
Yig(k) = [02(k) = 2T02(k — 1) — O2(k — 2)] -
cos(Ba2(k — 1))
Yau(k) = 0
Ygg(k) = 0
Yos(k) = 01(k)—2T0,(k —1) - 0y(k — 2) +
Oa(k) — 2T05(k — 1) = 62(k — 2)
Yaa(k) = [01(k) — 2T (k — 1) — 6, (k — 2)] -
cos(f2(k — 1)),
Y= [ gy 0O 03 04 ]T (18)
oy = %[mllyf +malf + malgy + L + b))
oy = %[2"1211192]
o3 = %[mﬂg% + 1]
g4 = %[mzlllgz]

In adaptive control methods, when the updating al-
gorithms are used for calculating adaptation gains, the
number of estimated parameters of the robot system
determine the computational efficiency. Since the pro-
posed model excluded nonlinear force terms, the num-
ber of the parameters been identified on-line is only
four, while for both Lagrange and Nicosia’s models the
estimated parameters are seven.
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4. CONCLUSIONS

Discrete-time robot models play an important role
in digital control of robot systems. In this paper, we
derive a new type of discrete-time robot model. The
new mode] obtained is simple in structure and possesses
good properties in accuracy, validity range and simplic-
ity. Its effectiveness 1s demonstrated by computer sim-
ulation.

Future research work will be incorporating the pro-
posed discrete-time robot model in control applications.
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