• Title/Summary/Keyword: Direct reduction

Search Result 1,361, Processing Time 0.027 seconds

A Study on the Psychological Healing for Japanese Korean Learners through Korean Food

  • Nang Ye Kim
    • CELLMED
    • /
    • v.14 no.2
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • Food is a fundamental aspect of human life, encompassing the cultural essentials of clothing, shelter, and sustenance. Experiencing the culture of individuals who speak the language one is learning through food has proven to be an effective means of enhancing learners' motivation. It can be presumed that direct exposure to Korean cuisine, either through consumption or preparation, will exert a profoundly positive psychological impact on Korean learners, contributing to psychological healing, indirectly evidenced by stress reduction. Therefore, this study conducted a survey among Korean learners in Japan to investigate the potential for psychological healing through engagement with Korean food.

Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 분사전략 변경 및 EGR 적용을 통한 배기저감에 관한 연구)

  • Park, Cheol-Woong;Kim, Hong-Suk;Woo, Se-Jong;Kim, Yong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.335-342
    • /
    • 2012
  • Nowadays, automobile manufacturers are focusing on the reduction of exhaust-gas emissions because of the harmful effects on humans and the environment, such as global warming by greenhouse gases. Gasoline direct injection (GDI) combustion is a promising technology that can improve fuel economy significantly compared to conventional port fuel injection (PFI) gasoline engines. In the present study, ultra-lean combustion with an excess air ratio of over 2.0 is realized with a spray-guided-type GDI combustion system, so that the fuel consumption is improved by about 13%. The level of exhaust-gas emissions and the operation performance with the multiple injection strategy and exhaust-gas recirculation (EGR) are examined in comparison with the emission regulations and from the point of view of commercialization.

LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection (분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성)

  • Jung, Jinyoung;Oh, Heechang;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

The Production of Tantalum Powder by MR and EMR Method (MR법 및 EMR법에 의한 탄탈륨 분말 제조)

  • Bae, In Seong;Park, Hyeoung Ho;Kim, Byung Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • In conventional metallothermic reduction(MR) for obtaining tantalum powder in batch-type operation, it is difficult to control morphology and location of deposits because the reaction occurs by direct physical contact between reductants and feed materials. On the other hand, a electronically mediated reaction(EMR) is capable to overcome these difficulties through the reaction by electron transfer and have a merit of continuous process. In this study an MR and EMR method has been applied to the production of a tantalum powder by sodium reduction of $K_2TaF_7$. As the reduction temperature increases, the particle size and yield of tantalum powder obtained by MR and EMR method is increased.

Turbulent Drag Reduction Using the Sliding-Belt Device (미끄러지는 벨트 장치를 이용한 난류 항력 감소)

  • Choi, Byunggui;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1481-1489
    • /
    • 1999
  • The sliding-belt concept introduced by Bechert et al. (AIAA J., Vol. 34, pp. 1072~1074) is numerically applied to a turbulent boundary layer flow for the skin-friction reduction. The sliding belt is moved by the shear force exerted on the exposed surface of the belt without other dynamic energy input. The boundary condition at the sliding belt is developed from the force balance. Direct numerical simulations are performed for a few cases of belt configuration. In the ideal case where the mechanical losses associated with the belt can be ignored, the belt velocity increases until the integration of the shear stress over the belt surface becomes zero, resulting in zero skin friction on the belt. From practical consideration of losses occurred In the belt device, a few different belt velocities are given to the sliding belt. It is found that the amount of drag reduction is proportional to the belt velocity.

A Review of Subbrow Approach in the Management of Non-Complicated Anterior Table Frontal Sinus Fracture

  • Kim, Jeenam;Choi, Hyungon
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.4
    • /
    • pp.186-189
    • /
    • 2016
  • Frontal sinus fractures, particularly anterior sinus fractures, are relatively common facial fractures. Many agree on the general principles of frontal fracture management; however, the optimal methods of reduction are controversial. The subbrow approach enables accurate reduction and internal fixation of the fractures in the anterior table of the frontal sinus by allowing direct visualization of the fracture. Given the surgical success in reduction and rigid fixation, patient satisfaction, and aesthetic benefits, the transcutaneous approach through a subbrow incision is superior to other reduction techniques used in the management of an anterior table frontal sinus fracture.

Maximum drag reduction in turbulent channel flow by polymer additives (난류 채널 유동에서 폴리머 첨가제에 의한 최대 항력감소)

  • Min Taegee;Choi Haecheon;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.475-478
    • /
    • 2002
  • Maximum drag reduction (MDR) in turbulent channel flow by polymer additives is studied by direct numerical simulation. An Oldroyd-B model is adopted to express the polymer stress because it is believed that MDR is closely related to the elasticity of the polymeric liquids. The Reynolds number based on the bulk velocity and the channel height is 40000. MDR in the present study is $44{\%}$ and this is in a good agreement with the Virk's asymptote. Turbulence statistics are also in good agreements with the experimental observation. In the 'large drag reduction', the decrease of turbulent kinetic energy is compensated by the increase of energy transfer from the polymer to the flow. Therefore, MDR is a dynamic equilibrium state of the energy transfer between the polymer and the flow.

  • PDF

Suboptimal Control for Drag Reduction in Turbulent Pipe Flow (환형관내 유동에서의 항력감소를 위한 준최적 제어)

  • Choi, Jung-Il;Xu, Chun-Xiao;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.377-382
    • /
    • 2001
  • A suboptimal control law in turbulent pipe flow is derived and tested. Two sensing variables ${\partial}p/{\partial}{\theta}\;|_w\;and\;{\partial}{\upsilon}_{\theta}/{\partial}r\;|_w$ are applied with two actuations ${\phi}_{\theta}$ and ${\phi}_r$. To test the suboptimal control law, direct numerical simulations of turbulent pipe flow at $Re_r=150$ are performed. When the control law is applied, a $13{\sim}23%$ drag reduction is achieved. The most effective drag reduction is made at the pair of ${\partial}{\upsilon}_{\theta}/{\partial}r\;|_w$ and ${\theta}_r$. An impenetrable virtual wall concept is useful for analyzing the near-wall suction and blowing. The virtual wall concept is useful for analyzing the near-wall behavior of the controlled flow. Comparison of the present suboptimal control with that of turbulent channel flow reveals that the curvature effect is insignificant.

  • PDF

Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

  • Han, Miseon;Han, Youngsun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.337-345
    • /
    • 2016
  • Recently, as the number of cores in computer systems has increased, the need for larger memory capacity has also increased. Unfortunately, dynamic random access memory (DRAM), popularly used as main memory for decades, now faces a scalability limitation. Phase change memory (PCM) is considered one of the strong alternatives to DRAM due to its advantages, such as high scalability, non-volatility, low idle power, and so on. However, since PCM suffers from short write endurance, direct use of PCM in main memory incurs a significant problem due to its short lifetime. To solve the lifetime limitation, many studies have focused on reducing the number of bit flips per write request. In this paper, we describe the PCM operating principles in detail and explore various bit flip reduction schemes. Also, we compare their performance in terms of bit reduction rate and lifetime improvement.

A Study on the Urea-SCR System for NOx Reduction of a light-Duty Diesel Engine (소형 디젤엔진의 NOx 저감을 위한 Urea-SCR 시스템에 관한 연구)

  • Nam Jeong-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.57-63
    • /
    • 2005
  • The effects of an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated with the parameters such as urea-SCR(Selective Catalytic Reduction) and EGR system. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection quantity can be controlled with the urea syringe pump, precisely. The effects of NOx reduction for the urea-SCR system were investigated with and without ECR engine, respectively. It was concluded that the SUF(Stoichiometric Urea Flow) is calculated and the NOx results are visualized with engine speed and load. Furthermore, the NOx map is made from this experimental results. It was suggested, therefore, that NOx reduction effects of the urea-SCR system without the EGR engine were better than that with the EGR engine except of low load and low speed.