
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.5.337 337

IEIE Transactions on Smart Processing and Computing

Bit Flip Reduction Schemes to Improve PCM Lifetime:
A Survey

Miseon Han1 and Youngsun Han2,*

1 School of Electrical and Computer Engineering, Korea University / Seoul, Korea mesunyyam@korea.ac.kr
2 Department of Electronic Engineering, Kyungil University / Gyeongsan, Korea youngsun@kiu.ac.kr

* Corresponding Author: Youngsun Han

Received August 10, 2016; Accepted September 29, 2016; Published October 30, 2016

* Review Paper: This paper reviews the recent progress possibly including previous works in a particular research topic, and
has been accepted by the editorial board through the regular reviewing process.

Abstract: Recently, as the number of cores in computer systems has increased, the need for larger
memory capacity has also increased. Unfortunately, dynamic random access memory (DRAM),
popularly used as main memory for decades, now faces a scalability limitation. Phase change
memory (PCM) is considered one of the strong alternatives to DRAM due to its advantages, such as
high scalability, non-volatility, low idle power, and so on. However, since PCM suffers from short
write endurance, direct use of PCM in main memory incurs a significant problem due to its short
lifetime. To solve the lifetime limitation, many studies have focused on reducing the number of bit
flips per write request. In this paper, we describe the PCM operating principles in detail and explore
various bit flip reduction schemes. Also, we compare their performance in terms of bit reduction
rate and lifetime improvement.

Keywords: Phase change memory, Bit flip reduction, Data comparison write, Flip-N-Write, FlipMin, CAFO

1. Introduction

As computing environments move to multi-core
processors, the demand for larger memory capacity is
rapidly increasing. However, further scaling of dynamic
random access memory (DRAM) makes the manufacturing
process complex, and thus, leads to high manufacturing
costs [1, 2]. As a result, DRAM now faces a scalability
limitation, even though process technology has improved.
Therefore, there is a need for a new type of memory that
can be used for main memory instead of DRAM. Among
several memory technologies, phase change memory
(PCM) has obtained considerable attention as a strong
alternative to DRAM due to its advantages, such as high
scalability, non-volatility, in-place programmability, low
idle power, and reasonable read latency [3, 4].

Uunfortunately, adopting PCM as main memory has a
critical problem in that PCM suffers from limited write
endurance (about 106 to 108 writes per cell) [5, 6], which
leads to a short lifetime. To overcome the lifetime
limitation, many previous works have studied methods
such as wear-leveling [7-9], error correction [10-13], bit
flip reduction [14-17], and so on [18-20]. Among these

solutions, bit flip reduction, which can be orthogonally
used with wear-leveling and error correction schemes, is a
method that reduces the number of bit flips per write
request. This mechanism postpones the wearing out of
PCM cells by programming only bits that change their
values. In this paper, we explore various bit reduction
schemes and evaluate their performance in terms of bit
reduction rate and lifetime improvement.

The contributions of this paper can be summarized as
follows.
·We explain the details of PCM operating principles.
·We explore various bit flip reduction schemes that

decrease the number of bit flips per write operation in
order to lengthen PCM lifetime.

·We compare the performance of these schemes in
terms of bit flip reduction rate and lifetime
improvement.

The rest of this paper is organized as follows. Section 2

describes PCM operations to help understand the
background to this paper. Section 3 describes the details of
various bit flip reduction schemes. Section 4 explains our
evaluation methodology. In Section 5, we analyze the

Han et al.: Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

338

performance of the schemes in terms of bit flip reduction
rate and lifetime improvement. Finally, we summarize this
paper in the last section.

2. PCM Operating Principles

PCM uses phase change materials in what is called a
chalcogenide alloy (GST: Ge2Sb2Te5). Fig. 1 shows a
ternary phase diagram of the Ge-Sb-Te system. The alloy
switches materials along a pseudo-binary line between
GeTe and Sb2Te3 where compositions can be expressed as
(GeTe)m(Sb2Te3)n [26], e.g., m is 2 and n is 1 for GST. To
obtain GST, adding more Ge to the Ge2Sb1Te2 starting
point leads to the phase change material. To store data in
cells, PCM uses a switch between two different physical
states of the alloy, i.e., the crystal and amorphous states.

Fig. 2 shows the change in state of a PCM cell. The
difference between the two states is a bonding mechanism.
The crystal state uses resonance bonding that gives the
substance lower potential energy. Alternatively, the
amorphous state uses covalent bonding that is stable at a
high temperature. Therefore, the crystal state shows low
resistivity (1kΩ), whereas the amorphous state has high
resistivity (1MΩ). The GST is connected between a bit line
and a transistor that is connected to a word line. When the
PCM cell is accessed, the word line turns on the transistor,
and the datum stored in the transistor is read using

resistivity difference.
Fig. 3 shows a typical resistance versus current (R-I)

curve of a PCM cell, and Fig. 4 shows the current pulses
required to read it, and for SET and RESET. As indicated
by the dotted line in Fig. 3, the resistance of the cell is
reduced dramatically when the cell hits a certain threshold
voltage, VT. Due to this threshold switching effect,
programming the cell is possible. Switching can be done
by heating through electrical pulses. The SET current pulse,
which has moderate power but long duration, heats GST to
around its crystallization temperature (100~150°C), and
thus, the cell changes to the SET state. The RESET current
pulse, which has high power but a short duration, heats
GST above its amorphous temperature (600°C); thus, it
puts the memory cell into the RESET state. Since current
pulses for SET and RESET operations are intense, a PCM
cell gets more unreliable the more it is programmed. As a
result, when the number of bit flips exceeds its endurance,
it cannot be programmed any more.

Fig. 1. Tertiary Ge-Sb-Te phase diagram [26].

Fig. 2. State change of a PCM cell.

Fig. 3. Typical R-I curve of a PCM cell [15].

Fig. 4. Current pulses during the read, SET, and RESET
operations [15].

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016

339

3. Bit Flip Reduction Schemes

In this section, we explore several bit flip reduction
schemes that reduce the number of bit flips per write
request, such as data comparison write (DCW), Flip-N-
Write, FlipMin, and cost-aware flip optimization (CAFO).

3.1 DCW
Conventional PCM directly writes input data to a target

address, regardless of the previous data stored at the
address. If an input datum is 1, it sends a SET current
pulse to the target cell. Otherwise, it executes the RESET
current pulse on the target cell. Therefore, a bit flip can be
0→0, 0→1, 1→0, or 1→1 in conventional PCM. Among
these, bit flips of 0→0 and 1→1 are not necessary, because
the previous bit value was the same as the bit value to be
stored. Therefore, the DCW scheme skips bit programming
in these cases. Fig. 5 shows the DCW algorithm when
PCM performs a write request. DCW reads the previous
datum from the target address before writing the input
datum. If the bit value of the input datum is the same as the
current bit value, DCW skips bit programming. Otherwise,
DCW programs the cell with the new bit value.

In order to execute the DCW algorithm, the possible
implementations are represented in Fig. 6. Row decoder
and Column MUX select eight cells with a selected word
line and eight selected bit lines by decoding the target
address. The pulse generator implements READ_pulse,
SET_pulse, and RESET_pulse with Read, Write, and
Clock signals. The read circuit and write driver perform
the read and write operations using the given pulse and
data.

As a result, if each probability of four bit flip cases
(0→0, 0→1, 1→0, and 1→1) is evenly 1/4, DCW can

halve the number of bit flips, on average, compared to
conventional PCM. Also, by reducing bit flips per write
operation, DCW can decrease the average power
consumption, as shown in Table 1. Since conventional
PCM consumes either SET power (PSET) or RESET power
(PRESET) regardless of the previous datum when the input
datum is 0 or 1, respectively, the average power
consumption is (PSET+PRESET)/2. As a result, DCW can
halve the average power consumption by (PSET+PRESET)/4
just by skipping unnecessary bit programming.

3.2 Flip-N-Write
Even though DCW halves bit flips, on average, if all bit

values of input data are different from bit values of
previous data, the number of bit flips is N, where N is the
data bit widths. Therefore, to further reduce bit flips, Flip-
N-Write introduces one additional bit, called a flip bit, that
indicates whether stored data is inverted or not.

// A: target address
// D and D’: input and previous data
// N: data bit width
1: procedure Write(A, D)
2: D’ = Read(A);
3: for i=0, i++, i<N do
4: update a bit if D[i]!=D’[i]
5: end for
6: end procedure

Fig. 5. DCW algorithm.

Fig. 6. Simplified block diagram of DCW [14].

Table 1. Average power consumption of conventional
PCM and DCW [15].

CONVENTIONAL DCW Bit flip
POWER PROBABILITY POWER PROBABILITY

0→0 PSET 1/4 0 1/4
0→1 PRESET 1/4 PRESET 1/4
1→0 PSET 1/4 PSET 1/4
1→1 PRESET 1/4 0 1/4

Average
power (PSET+PRESET)/2 (PSET+PRESET)/4

// A: target address
// D and D’: input and previous data
// F and F’: new and previous flip bit values
// N: data bit width
1 : procedure Write(A, D)
2 : D’ = Read_Data(A)
3 : F’ = Read_Flip_Bit(A)
4 : if hamming_dist({D,0}, {D’,F’}) > N/2
5 : D = ~D
6 : F = 1
7 : else
8 : F = 0
9 : end if
10: for i=0, i++, i<N do
11: update a data bit if D[i]!=D’[i]
12: end for
13: update a flip bit if F!=F’
14: end procedure

Fig. 7. Write algorithm of Flip-N-Write [15].

// A: target address
// D: output data
// F: flip bit value
1 : procedure Read(A)
2 : D = Read_Data(A)
3 : F = Read_Flip_Bit(A)
4 : if F is 1
5 : D = ~D
6 : end if
7 : end procedure

Fig. 8. Read algorithm of Flip-N-Write [15].

Han et al.: Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

340

Figs. 7 and 8 describe how the Flip-N-Write scheme
performs write and read requests, respectively. To perform
a write request, Flip-N-Write reads previous data from the
target addresses. Next, the Hamming distance of the
previous data and flip bit from new input data and flip bit
are calculated to determine the number of bit flips. If the
Hamming distance is more than N/2, Flip-N-Write inverts
the input data and sets the new flip bit to 1. Finally, only
bit values of the input data that are different from bit
values of the previous data are updated in the target cells.
If a new flip bit is different from the previous flip bit, flip
bit is also updated. To perform a read request, Flip-N-
Write reads previously stored data and the flip bit. Then,
the data are inverted if the stored flip bit is 1.

Fig. 9 shows logical blocks for the Flip-N-Write write
data path. Two data from the read buffer and write buffer
are compared, bit by bit, using XOR logic, and a bit vector
presenting which bits are different is generated. The
count1 logic calculates Hamming distances between read
and write data that indicate the number of bit flips, to
determine whether input data should be flipped or not. The
SET/RESET enable signals are generated using data
multiplexer output. Also, program-enable signals are
generated using XOR logic output and count1 logic
determination.

To compare average bit flips in DCW and Flip-N-Write,
the average number of bit flips can be calculated with the
following equations:

0

1
2 2

N

DCW N
i

N NF i
i=

⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠
∑ (1)

2

1
0

11
2

N

Flip N Write N
i

N
F i

i− − +
=

+⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑

 ()
1

1
1

2

111
2

N

N
Ni

N
N i

i

+

+

= +

+⎛ ⎞
+ − ⋅ ⎜ ⎟

⎝ ⎠
∑ (2)

where FDCW and FFlip-N-Write are average numbers of bit flips
in DCW and Flip-N-Write, respectively. In the equations,

the probability that both new and old bits are different is
assumed to be 1/2. Thus, the probability of having i

different bits between new and old data is ()1/ 2 N N
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

. As

shown in the second equation, the number of bit flips
peaks at N/2 and decreases after this point, while DCW
keeps increasing the number of bit flips. Fig. 10 plots the
bit flip improvement with Flip-N-Write against the DCW
scheme and the storage overhead of Flip-N-Write. As
shown in the figure, improvement under Flip-N-Write is
from 11% (32-bit data) to 25% (2-bit data).

Therefore, Flip-N-Write obtains a further reduced
number of bit flips, compared to DCW, by using only an
additional flip bit. This is because the maximum number of
bit flips in Flip-N-Write never exceeds N/2, since it inverts
input data and sets a new flip bit value when the Hamming
distance is over N/2.

3.3 FlipMin
FlipMin is a bit flip reduction technique that uses coset

code [28, 29] when performing write and read requests. It
encodes an input dataword into a vector that is actually to
be stored in PCM cells while performing a write request.
Also, it decodes a stored vector to an output dataword
during a read request. Coset coding provides many vectors
to the same dataword with extra bits. In case of k-bit
dataword and n-bit vector with c-bit additional bits, i.e.,
c n k= − , a dataword and vector can be one of 2k and 2n
strings of zeros and ones, respectively. This means one
dataword of 2k can have a set with 2c vectors. FlipMin
chooses only one vector among a set that is called a coset
while encoding the dataword to minimize the number of
bits.

Fig. 9. Logical blocks of the Flip-N-Write data path
when data are 16-bit and the flip bit is 1 [15].

Fig. 10. Improvement with Flip-N-Write against DCW,
and storage overhead for Flip-N-Write [15].

Dataword1 00 : Coset1 {0000,0101,1010,1111}
Dataword2 01 : Coset2 {0001,0100,1011,1110}
Dataword3 10 : Coset3 {0010,0111,1000,1101}
Dataword4 11 : Coset4 {0011,0110,1001,1100}

Fig. 11. Example of FlipMin’s coset coding.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016

341

Fig. 11 presents an example of FlipMin’s coset coding
when datawords are two-bit and vectors are four-bit, i.e.,
extra bits are two-bit. FlipMin maps each dataword to a
coset that consists of four vectors. When PCM wants to
write data to cells, if the dataword to be written is 01 and
the previously stored vector is 1001, FlipMin maps a
dataword 01 to coset2, and chooses the vector 1011 that
has the minimum bit flips, and stores it. When PCM wants
to read data from the cells, if the stored vector at the target
address is 0111, the vector is decoded into dataword 01.

To generate cosets, FlipMin uses dual Hamming
(72,64) code, called punctured Hadamard code [27], that
maps 8-bit data to 72-bit vectors with 64-bit parities. In the
code, there are many vectors that have the same parity, i.e.,
28 vectors for one parity. Therefore, FlipMin considers a
64-bit dataword as parity code and 72-bit vectors that have
the same parity as cosets. When FlipMin writes a dataword
to PCM cells, it maps the dataword to parity code and
finds the vector with the minimum bit flips from a coset
that has the same parity code.

Fig. 12 shows the logical blocks for writing/reading in
FlipMin. When PCM writes a dataword, the coset
generator matrix maps the dataword to a set and generates
coset elements. Then, PCM reads the previous vector from
memory, and selects from coset elements the vector that
has the minimum bit flips. This selected vector is written
to memory. In contrast, when PCM reads a dataword, the
vector read from memory is converted to the dataword
through the decoding matrix.

With coset coding, FlipMin can reduce bit flips
further than both DCW and Flip-N-Write. Table 2 shows
the average number of bit flips in FlipMin when

datawords are four-bit. With DCW, the number of
datawords that have no 1’s is one, and that have one 1 is
four, and so on. Therefore, the average number of bit
flips in DCW is ()0 1 1 4 2 6 3 4 4 1 /16 2.× + × + × + × + × =
With FlipMin, the average number of bit flips is 1.375, i.e.,
()0 1 1 8 2 7 3 0 4 0 /16 1.375,× + × + × + × + × = which is a
31% reduction. For 64-bit datawords, the average number
of bit flips in DCW, Flip-N-Write, and FlipMin are 32,
28.82, and 24.48, respectively. Therefore, FlipMin reduces
average bit flips by 24.5%, compared to DCW, which is
significantly larger than the 9.93% in Flip-N-Write.

3.4 CAFO
Although DCW, Flip-N-Write, and FlipMin

significantly reduce the number of bit flips, they do not
consider the asymmetric nature of a PCM cell’s state
change. Since RESET current pulse is more intense than
the SET current pulse, PCM cell endurance is more
dependent on the RESET current [24, 25]. Therefore,
CAFO proposes a cost model considering the asymmetric
nature of programming a PCM cell, and uses it to encode
and decode data to reduce the overall cost of performing a
write request.

When comparing previous and input data, there are
four different bit flip cases. CAFO labels the cost of these
bit flip cases, which are 0→1, 1→0, 0→0, and 1→1, to a,
b, c, and d, respectively and models the total cost of a write
request, named C, with the following formula:

 0 1 1 0 0 0 1 1C n a n b n c n d→ → → →= + + + (3)

where 0 1n → , 1 0 n → , 0 0 n → , and 1 1n → are the number of a, b, c,
and d bit flip cases, respectively.

With this cost modeling, CAFO encodes input data to
minimize the overall cost of performing a write request. It
manipulates N-bit input data as an n by m matrix, where
N n m= × . Each row and column has an additional
auxiliary bit that represents its corresponding row or
column and is inverted. Also, CAFO labels the gain as G,
which is calculated by C- Cinverted where Cinverted is the cost
of writing an inverted form of the input data. Therefore, a
positive gain means that inverted input data have lower
overall costs than un-inverted data. Fig. 13 shows an
example of a gain calculation when a, b, c, and d are 1, 2,

Fig. 12. Logical blocks of FlipMin [16].

Table 2. Average number of bit flips when datawords
are four-bit [16].

DCW FlipMin
of 1’s # of words # of 1’s # of words

0 1 0 1
1 4 1 8
2 6 2 7
3 4 3 0
4 1 4 0

Bit flips 2.0 Bit flips 1.375

Han et al.: Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

342

0, and 0, respectively. In the figure, gain G is 3, because C
is 8, and Cinverted is 5. In this case, the inverted form of the
input data, i.e., 01010101, has lower cost than the input
data, i.e., 10101010.

Fig. 14 presents the CAFO encoding algorithm. When
PCM performs a write request, the cost, C, of each row is
calculated by comparing input data and previous data in
the row. After that, cost Cinverted of each row is calculated
by comparing the inverted form of input data and the
previous data in the row. Finally, the gain of each row,
called G, is calculated, and CAFO inverts the row if G is
greater than 0. CAFO repeatedly searches and inverts rows
and columns that have positive gains until there is no row
and column to be inverted.

Fig. 15 presents the CAFO decoding algorithm. Each
element of a data matrix has two auxiliary bits, i.e., one bit
for the corresponding row and another bit for the
corresponding column. If XORing these two bits results in
1, this means only one of the corresponding row or column
is inverted. Therefore, the elements of a data matrix where
auxiliary bits have different values are inverted when PCM
reads data from memory cells.

This paper also proposes optimization of the CAFO
encoding algorithm. The encoding algorithm shown in Fig.
14 assumes the total write cost cannot be further reduced if
every row and column has a zero or negative gain.
However, it is possible to further reduce the cost of a write
operation, even if no row or column has a positive gain.
Fig. 16 shows an example of encoding optimization where
a cell with 1 represents a bit that will be flipped because its
value is different from the previous value. Although row 2
and column 1 do not have positive gains, inverting row 2
and column 1 further reduces the cost of the write
operation from 5 to 3. Therefore, the condition that has to
be met to further reduce the cost can be formulated as
follows:

 ,2 0r c r c

r S r S

G G g
∈ ∈

+ − >∑ ∑ (4)

where S is the subset of rows, and gr,c is the gain from
inverting the intersection cell at row r and column c. This
formula is for inverting multiple rows and one column
simultaneously. Inverting one row and multiple columns
can be done by a formula similar to Eq. (4). In addition,
since auxiliary bits are also stored in PCM cells, the cost of
writing the auxiliary bits should be considered when
inverting rows and columns.

Maddah, et al. [17] compared bit flip reduction in Flip-
N-Write, FlipMin, and CAFO where they assumed them to
have the same storage overhead, and also assumed a, b, c,
and d to be 1, 1, 0, and 0, respectively. As a result, CAFO
showed more bit flip reduction than Flip-N-Write and
FlipMin when input data were 64B, 128B, and 512B. Also,

Fig. 13. Gain calculation when a, b, c, and d are 1, 2, 0,
and 0, respectively.

1: Invert = True
2: ColumnCheck = False
3: while Invert do
4: if PositiveGainRows() then
5: Flip Rows with Positive Gain
6: else
7: if ColumnCheck then
8: Invert = False
9: break
10: end if
11: end if
12: if PositiveGainColumns() then
13: Flip Columns with Positive Gain
14: ColumnCheck = True
15: else
16: Invert = False
17: end if
18: end while

Fig. 14. Encoding algorithm of CAFO [17].

// VR : Auxiliary bit for a row
// VC : Auxiliary bit for a column
// b[n][m] : Data block
1: for i=0, i++, i<n do
2: for j=0, j++, j<m do
3: if (VRi + + VCj) then
4: Read ~b[i][j]
5: else
6: Read b[i][j]
7: end if
8: end for
9: end for

Fig. 15. Decoding algorithm of CAFO [17].

Fig. 16. Example of encoding optimization when a, b, c,
and d are 1, 1, 0, and 0, respectively. A cell with 1
represents a bit value that is different from the
previous value.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016

343

CAFO showed a greater cost reduction than Flip-N-Write
and FlipMin with various values of a, b, c, and d. In
addition, even if the CAFO cost model was adopted in the
compared schemes when encoding input data, CAFO
achieved greater cost reduction than the other schemes.4.
Experimental Setup

We evaluated lifetime extension from DCW, Flip-N-
Write, and CAFO compared to conventional PCM. Table 3
shows the storage overhead of each scheme when the data
bit width is 64 bits. DCW does not need any additional
storage, because it just skips unnecessary bit updates
without encoding data. Flip-N-Write uses a single flip bit
to mark whether stored data are inverted or not. CAFO
uses 16 auxiliary bits to handle 64-bit data as an eight-by-
eight matrix.

Table 4 shows the system configuration for tracing a
stress benchmark [7] that is a mixture of eight write-
intensive benchmarks of SPEC CPU2006 [21] , i.e., milc,
GemsFDTD, leslie3d, astar, soplex, zeusmp, omnetpp, and
bwaves. The stress benchmarks were traced with

MARSSx86 [22] on the system configurations described in
Table 4.

In the experiment, we assumed memory access
granularity of 64 bytes. A block was replaced by a spare
block when it failed to write data [12, 16]. The write
endurance of each memory cell followed a Gaussian
distribution where the mean is 108 and the standard
deviation is 107. Also, we used perfect wear-leveling that
equally wears out PCM blocks so as to not consider the
effect of the wear leveling algorithm assumed by Seong et
al. [11]. Moreover, we modified DRAMSim2 [23] to
examine the write endurance of each memory cell.
Furthermore, since the lifetime estimation was
significantly time-consuming, we applied the projection
method described by Jacobvitz et al. [16] to shorten the
simulation time.

5. Performance evaluation

Table 5 shows the number of bit flips in each scheme
after 10 million write requests and their reduction rates,
compared to conventional PCM. In conventional PCM, the
number of bit flips reached 51.2 billion, since it flips all
bits regardless of the previous data. DCW showed a
significantly reduced number of bit flips because the input
data of a stress benchmark frequently has all 0’s or all 1’s
due to data initialization. In our experiment, these cases
were more than 50% of the first 10 million write requests

Table 3. Compared schemes and their storage
overhead.

Scheme Storage overhead
Conventional 0% (0 bits/64 bits)

DCW 0% (0 bits/64 bits)
Flip-N-Write 1.56% (1 bit/64 bits)

CAFO 25% (16 bits/64 bits)

Table 4. System configuration used for tracing a stress
benchmark.

Structure Configuration
CPU x86-64 out-of-order core at 3.6 GHz

L1 D-Cache 128 KB, 8-way associative, 64 B line size
L1 I-Cache 128 KB, 8-way associative, 64 B line size
L2 Cache 2 MB, 8-way associative, 64 B line size

PCM 16 GB

Table 5. The number of bit flips in each scheme after
performing 10 million write requests from a stress
benchmark.

Scheme Bit flip (x109) Reduction
Conventional 51.2 -

DCW 7.7 85.0%
Flip-N-Write 7.3 85.7%

CAFO 5.8 88.7%

Fig. 17. Percentage of blocks still usable from the total blocks as write requests of a stress benchmark are
performed. In addition, PCM lifetime extension in bit flip reduction schemes compared to the conventional PCM.

Han et al.: Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

344

from the stress benchmark. Flip-N-Write further reduced
bit flips by 85.7% by just adding one additional flip bit.
CAFO showed an even more improved bit flip reduction
rate, i.e., 88.7%.

Fig. 17 shows the number of blocks still usable out of
the total number of memory blocks as write requests were
performed. In the figure, each scheme for lifetime
extension was calculated by the number of performed
write requests until an error occurs, compared to
conventional PCM. DCW improved PCM lifetime by 4.72
times, compared to conventional PCM. Flip-N-Write and
CAFO further enhanced lifetime by 5.00 times and 6.84
times, respectively. Although CAFO showed the best
performance in terms of bit flip reduction rate and lifetime
extension, its storage overhead, i.e., 25%, was larger than
the other schemes.

6. Summary

As more computing systems become multi-core
processor systems, larger memory capacity is needed, and
thus, PCM has gained attention as the promising
alternative for main memory due to its high scalability.
However, because of its write endurance problem, PCM
cannot be directly adopted as main memory. Therefore, in
this paper, we explored existing schemes to resolve the
endurance problem by reducing the number of bit flips per
cell.

First, we described the PCM operating principles in
detail. PCM employs a phase change material called a
chalcogenide alloy. The alloy has two different physical
states: the crystal state and the amorphous state. These two
states have different resistivity. The crystal state shows
low resistivity (1kΩ), whereas the amorphous state shows
high resistivity (1MΩ). With this resistivity difference,
data can be stored in the cell. To change the cell to the
crystal state, the SET current pulse, which has moderate
power but long duration, heats the cell. Conversely, the
RESET current pulse, which has high power but a short
duration, changes the cell to the amorphous state. However,
as the cell is repeatedly programmed, it becomes more
unreliable, and eventually, cannot change states any more.

Then, we explored existing bit flip–reduction schemes.
These schemes include DCW, Flip-N-Write, FlipMin, and
CAFO. The DCW scheme skips bit programming of 0→0
and 1→1 because these situations do not need it (the
previous bit value is the same as the bit value of the data to
be stored). Flip-N-Write adds one additional bit, called a
flip bit, to further reduce bit flips. When writing data, Flip-
N-Write inverts input data and sets a flip bit when the
Hamming distance between the input data and the previous
data is over N/2 to limit the maximum number of bit flips
under N/2. FlipMin uses coset coding to provide many
vectors that encode candidates for the same input data. To
generate vectors, FlipMin uses dual Hamming (72,64)
code. When performing a write request, FlipMin maps 64-
bit input data to parity with the Hamming code, and finds a
preferred element from a set that has the same parity code.
The CAFO scheme considers asymmetric PCM cells when
encoding data to reduce the overall cost of performing a

write request. It manipulates input data as a matrix, and
continuously inverts a row or a column if inverting incurs
less cost than before, until there is no row or column to be
inverted.

In addition, these schemes were examined to compare
performance in terms of bit flip–reduction rate and lifetime
improvement. For bit flip–reduction rate, the number of bit
flips in these schemes was compared after executing 10
million write requests of a stress benchmark. DCW, Flip-
N-Write, and CAFO showed a significantly reduced
number of bit flips, compared to conventional PCM, i.e.,
85.0%, 85.7%, and 88.7%, respectively. Also, lifetime
extension of each scheme was calculated by the number of
write requests until an error occurs, compared to
conventional PCM. As a result, DCW, Flip-N-Write, and
CAFO improved the lifetime of PCM by 4.72, 5.00, and
6.84 times, respectively, compared to conventional PCM.
Although CAFO showed the best performance in terms of
bit flip reduction rate and lifetime extension, its storage
overhead, i.e., 25%, was larger than other schemes.

References

[1] N. Aggarwal, et al., "Power-Efficient DRAM

Speculation," in Proc. of HPCA 2008, pp. 317-328,
Feb. 2008. Article (CrossRef Link)

[2] H. David, et al., “Memory power management via
dynamic voltage/frequency scaling,” in Proc. of
ICAC 2011, pp. 31-40, June. 2011. Article (CrossRef
Link)

[3] S. Chen, et al., “Rethinking Database Algorithms for
Phase Change Memory,” in Proc. of CIDR 2011, pp.
21-31, Jan. 2011. Article (CrossRef Link)

[4] B. Lee, et al., “Architecting Phase Change Memory
As a Scalable Dram Alternative,” in Proc. of ISCA
2009, pp. 2-13, June. 2009. Article (CrossRef Link)

[5] M. Prasanth, et al., “A Low-power Phase Change
Memory Based Hybrid Cache Architecture,” in Proc.
of GLSVLSI 2008, pp. 395-398, May. 2008. Article
(CrossRef Link)

[6] Y. Joo, et al., “Energy- and endurance-aware design
of phase change memory caches,” in Proc. of DATE
2010, pp. 136-141, Mar. 2010. Article (CrossRef
Link)

[7] M. K. Qureshi, et al., “Enhancing lifetime and
security of PCM-based Main Memory with Start-Gap
Wear Leveling,” in Proc. of MICRO 2009, pp. 14-23,
Dec. 2009. Article (CrossRef Link)

[8] N. Seong, et al., “Security Refresh: Prevent
Malicious Wear-out and Increase Durability for
Phase-change Memory with Dynamically Randomized
Address Mapping,” in Proc. of ISCA 2010, pp. 383-
394, June. 2010. Article (CrossRef Link)

[9] H. Chang, et al., “Marching-Based Wear-Leveling for
PCM-Based Storage Systems,” ACM TODAES, Vol.
20, pp. 25–46, Mar. 2015. Article (CrossRef Link)

[10] S. Schechter, et al., “Use ECP, Not ECC, for Hard
Failures in Resistive Memories,” in Proc. of ISCA
2010, pp. 141-152, June. 2010. Article (CrossRef
Link)

[11] N. H. Seong, et al., “SAFER: Stuck-At-Fault Error

http://dx.doi.org/10.1109/HPCA.2008.4658649
http://dx.doi.org/10.1145/1998582.1998590
http://dx.doi.org/10.1145/1998582.1998590
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.1796&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1555815.1555758
http://dx.doi.org/10.1145/1366110.1366204
http://dx.doi.org/10.1145/1366110.1366204
http://dx.doi.org/10.1109/DATE.2010.5457221
http://dx.doi.org/10.1109/DATE.2010.5457221
http://dx.doi.org/10.1145/1669112.1669117
http://dx.doi.org/10.1109/MM.2010.101
http://dx.doi.org/10.1145/2699831
http://dx.doi.org/10.1145/1816038.1815980
http://dx.doi.org/10.1145/1816038.1815980

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 5, October 2016

345

Recovery for Memories,” in Proc. of MICRO 2010,
pp. 115-124, Dec. 2010. Article (CrossRef Link)

[12] D. H. Yoon, et al., “FREE-p: Protecting non-vvolatile
memory against both hard and soft errors,” in Proc.
of HPCA 2011, pp. 466-477, Feb. 2011. Article
(CrossRef Link)

[13] J. Fan, et al., “Aegis: Partitioning Data Block for
Efficient Recovery of Stuck-at-faults in Phase
Change Memory,” in Proc. of MICRO 2013, pp. 433-
444, Dec. 2013. Article (CrossRef Link)

[14] B. Yang, et al., “A Low Power Phase-Change
Random Access Memory using a Data-Comparison
Write Scheme,” in Proc. of ISCAS 2007, pp. 3014-
3017, May. 2007. Article (CrossRef Link)

[15] S. Cho, et al., “Flip-N-Write: A simple deterministic
technique to improve PRAM write performance,
energy and endurance,” in Proc. of MICRO 2009, pp.
347-357, Dec. 2009. Article (CrossRef Link)

[16] A. N. Jacobvitz, et al., “Coset coding to extend the
lifetime of memory,” in Proc. of HPCA 2013, pp.
222-233, Feb. 2013. Article (CrossRef Link)

[17] R. Maddah, et al., “CAFO: Cost aware flip
optimization for asymmetric memories,” in Proc. of
HPCA 2015, pp. 320-330, Feb. 2015. Article
(CrossRef Link)

[18] J. Chen, et al., “Exploring Dynamic Redundancy to
Resuscitate Faulty PCM Blocks,” ACM JETC, Vol.
10, pp. 31–53, June. 2014. Article (CrossRef Link)

[19] Z. Miao, et al., “Writeback-aware Partitioning and
Replacement for Last-level Caches in Phase Change
Main Memory Systems,” ACM TACO, Vol. 8, pp.
53–73, Jan. 2012. Article (CrossRef Link)

[20] I. Engin, et al., “Dynamically Replicated Memory:
Building Reliable Systems from Nanoscale Resistive
Memories,” in Proc. of ASPLOS 2010, pp. 3-14, Mar.
2010. Article (CrossRef Link)

[21] P. Aashish, et al., “Analysis of Redundancy and
Application Balance in the SPEC CPU2006
Benchmark Suite,” in Proc. of ISCA 2007, pp. 412-
423, June. 2007. Article (CrossRef Link)

[22] A. Patel, et al., “MARSS: A full system simulator for
multicore x86 CPUs,” in Proc. of DAC 2011, pp.
1050-1055, June. 2011. Article (CrossRef Link)

[23] P. Rosenfeld, et al., “DRAMSim2: A Cycle Accurate
Memory System Simulator,” IEEE Computer
Architecture Letters, Vol. 10, pp. 16–19, Jan. 2011.
Article (CrossRef Link)

[24] W. Zhang, et al., “Characterizing and mitigating the
impact of process variations on phase change based
memory systems,” in Proc. of MICRO 2008, pp. 2-13,
Dec. 2009. Article (CrossRef Link)

[25] K. Kim, et al., “Reliability investigations for
manufacturable high density PRAM,” in Proc. of
IRPS 2005, pp. 157-162, Apr. 2005. Article
(CrossRef Link)

[26] S. Raoux, et al., “Phase change materials and phase
change memory,” Materials Research Society, Vol.
39, pp. 703–710, Aug. 2014. Article (CrossRef Link)

[27] I. Heng, et al., “Error correcting codes associated

with complex Hadamard matrices,” Applied
Mathematics Letters, Vol. 11, pp. 77–80, July. 1998.
Article (CrossRef Link)

[28] G.D. Forney, “Coset codes. I. Introduction and
geometrical classification,” IEEE Transactions on
Information Theory, Vol. 34, pp. 1123–1151, Sep.
1988. Article (CrossRef Link)

[29] G.D. Forney, “Coset codes. II. Binary lattices and
related codes,” IEEE Transactions on Information
Theory, Vol. 34, pp. 1152–1187, Sep. 1988. Article
(CrossRef Link)

Miseon Han received her BEng in
Electrical Engineering from Korea
University, Seoul, Rep. of Korea, in
February 2012. Currently, she is a PhD
candidate in the same department. Her
research interests include compiler
support, microarchitecture, and memory
designs.

Youngsun Han received his BEng and
PhD from the School of Engineering at
Korea University, Seoul, Rep. of
Korea, in 2003 and 2009, respectively.
He was a senior engineer at Samsung
LSI from 2009 to 2011. Currently, he
is an assistant professor with the
Department of Electronic Engineering,

Kyungil University. His research interests include system
software optimization, microarchitectures, high-perfor-
mance computing, and SoC design.

Copyrights © 2016 The Institute of Electronics and Information Engineers

http://dx.doi.org/10.1109/MICRO.2010.46
http://dx.doi.org/10.1109/HPCA.2011.5749752
http://dx.doi.org/10.1109/HPCA.2011.5749752
http://dx.doi.org/10.1145/2540708.2540745
http://dx.doi.org/10.1109/ISCAS.2007.377981
http://dx.doi.org/10.1145/1669112.1669157
http://dx.doi.org/10.1109/HPCA.2013.6522321
http://dx.doi.org/10.1109/HPCA.2015.7056043
http://dx.doi.org/10.1109/HPCA.2015.7056043
http://dx.doi.org/10.1145/2602156
http://dx.doi.org/10.1145/2086696.2086732
http://dx.doi.org/10.1145/1736020.1736023
http://dx.doi.org/10.1145/1250662.1250713
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5982026
http://dx.doi.org/10.1109/L-CA.2011.4
http://dx.doi.org/10.1145/1669112.1669116
http://dx.doi.org/10.1109/RELPHY.2005.1493077
http://dx.doi.org/10.1109/RELPHY.2005.1493077
http://journals.cambridge.org/download.php?file=%2FMRS%2FMRS39_08%2FS0883769414001390a.pdf&code=30c858eb7f54168d968140bc4db80943
http://dx.doi.org/10.1016/S0893-9659(98)00059-7
http://dx.doi.org/10.1109/18.21245
http://dx.doi.org/10.1109/18.21246
http://dx.doi.org/10.1109/18.21246

