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Abstract: Recently, as the number of cores in computer systems has increased, the need for larger 
memory capacity has also increased. Unfortunately, dynamic random access memory (DRAM), 
popularly used as main memory for decades, now faces a scalability limitation. Phase change 
memory (PCM) is considered one of the strong alternatives to DRAM due to its advantages, such as 
high scalability, non-volatility, low idle power, and so on. However, since PCM suffers from short 
write endurance, direct use of PCM in main memory incurs a significant problem due to its short 
lifetime. To solve the lifetime limitation, many studies have focused on reducing the number of bit 
flips per write request. In this paper, we describe the PCM operating principles in detail and explore 
various bit flip reduction schemes. Also, we compare their performance in terms of bit reduction 
rate and lifetime improvement.     
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1. Introduction 

As computing environments move to multi-core 
processors, the demand for larger memory capacity is 
rapidly increasing. However, further scaling of dynamic 
random access memory (DRAM) makes the manufacturing 
process complex, and thus, leads to high manufacturing 
costs [1, 2]. As a result, DRAM now faces a scalability 
limitation, even though process technology has improved. 
Therefore, there is a need for a new type of memory that 
can be used for main memory instead of DRAM. Among 
several memory technologies, phase change memory 
(PCM) has obtained considerable attention as a strong 
alternative to DRAM due to its advantages, such as high 
scalability, non-volatility, in-place programmability, low 
idle power, and reasonable read latency [3, 4]. 

Uunfortunately, adopting PCM as main memory has a 
critical problem in that PCM suffers from limited write 
endurance (about 106 to 108 writes per cell) [5, 6], which 
leads to a short lifetime. To overcome the lifetime 
limitation, many previous works have studied methods 
such as wear-leveling [7-9], error correction [10-13], bit 
flip reduction [14-17], and so on [18-20]. Among these 

solutions, bit flip reduction, which can be orthogonally 
used with wear-leveling and error correction schemes, is a 
method that reduces the number of bit flips per write 
request. This mechanism postpones the wearing out of 
PCM cells by programming only bits that change their 
values. In this paper, we explore various bit reduction 
schemes and evaluate their performance in terms of bit 
reduction rate and lifetime improvement. 

The contributions of this paper can be summarized as 
follows. 
·We explain the details of PCM operating principles. 
·We explore various bit flip reduction schemes that 

decrease the number of bit flips per write operation in 
order to lengthen PCM lifetime. 

·We compare the performance of these schemes in 
terms of bit flip reduction rate and lifetime 
improvement. 

 
The rest of this paper is organized as follows. Section 2 

describes PCM operations to help understand the 
background to this paper. Section 3 describes the details of 
various bit flip reduction schemes. Section 4 explains our 
evaluation methodology. In Section 5, we analyze the 
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performance of the schemes in terms of bit flip reduction 
rate and lifetime improvement. Finally, we summarize this 
paper in the last section. 

2. PCM Operating Principles 

PCM uses phase change materials in what is called a 
chalcogenide alloy (GST: Ge2Sb2Te5). Fig. 1 shows a 
ternary phase diagram of the Ge-Sb-Te system. The alloy 
switches materials along a pseudo-binary line between 
GeTe and Sb2Te3 where compositions can be expressed as 
(GeTe)m(Sb2Te3)n [26], e.g., m is 2 and n is 1 for GST. To 
obtain GST, adding more Ge to the Ge2Sb1Te2 starting 
point leads to the phase change material. To store data in 
cells, PCM uses a switch between two different physical 
states of the alloy, i.e., the crystal and amorphous states. 

Fig. 2 shows the change in state of a PCM cell. The 
difference between the two states is a bonding mechanism. 
The crystal state uses resonance bonding that gives the 
substance lower potential energy. Alternatively, the 
amorphous state uses covalent bonding that is stable at a 
high temperature. Therefore, the crystal state shows low 
resistivity (1kΩ), whereas the amorphous state has high 
resistivity (1MΩ). The GST is connected between a bit line 
and a transistor that is connected to a word line. When the 
PCM cell is accessed, the word line turns on the transistor, 
and the datum stored in the transistor is read using 

resistivity difference. 
Fig. 3 shows a typical resistance versus current (R-I) 

curve of a PCM cell, and Fig. 4 shows the current pulses 
required to read it, and for SET and RESET. As indicated 
by the dotted line in Fig. 3, the resistance of the cell is 
reduced dramatically when the cell hits a certain threshold 
voltage, VT. Due to this threshold switching effect, 
programming the cell is possible. Switching can be done 
by heating through electrical pulses. The SET current pulse, 
which has moderate power but long duration, heats GST to 
around its crystallization temperature (100~150°C), and 
thus, the cell changes to the SET state. The RESET current 
pulse, which has high power but a short duration, heats 
GST above its amorphous temperature (600°C); thus, it 
puts the memory cell into the RESET state. Since current 
pulses for SET and RESET operations are intense, a PCM 
cell gets more unreliable the more it is programmed. As a 
result, when the number of bit flips exceeds its endurance, 
it cannot be programmed any more. 

 

 

Fig. 1. Tertiary Ge-Sb-Te phase diagram [26]. 
 

Fig. 2. State change of a PCM cell. 

Fig. 3. Typical R-I curve of a PCM cell [15]. 
 

Fig. 4. Current pulses during the read, SET, and RESET 
operations [15]. 
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3. Bit Flip Reduction Schemes 

In this section, we explore several bit flip reduction 
schemes that reduce the number of bit flips per write 
request, such as data comparison write (DCW), Flip-N-
Write, FlipMin, and cost-aware flip optimization (CAFO). 

3.1 DCW 
Conventional PCM directly writes input data to a target 

address, regardless of the previous data stored at the 
address. If an input datum is 1, it sends a SET current 
pulse to the target cell. Otherwise, it executes the RESET 
current pulse on the target cell. Therefore, a bit flip can be 
0→0, 0→1, 1→0, or 1→1 in conventional PCM. Among 
these, bit flips of 0→0 and 1→1 are not necessary, because 
the previous bit value was the same as the bit value to be 
stored. Therefore, the DCW scheme skips bit programming 
in these cases. Fig. 5 shows the DCW algorithm when 
PCM performs a write request. DCW reads the previous 
datum from the target address before writing the input 
datum. If the bit value of the input datum is the same as the 
current bit value, DCW skips bit programming. Otherwise, 
DCW programs the cell with the new bit value. 

In order to execute the DCW algorithm, the possible 
implementations are represented in Fig. 6. Row decoder 
and Column MUX select eight cells with a selected word 
line and eight selected bit lines by decoding the target 
address. The pulse generator implements READ_pulse, 
SET_pulse, and RESET_pulse with Read, Write, and 
Clock signals. The read circuit and write driver perform 
the read and write operations using the given pulse and 
data. 

As a result, if each probability of four bit flip cases 
(0→0, 0→1, 1→0, and 1→1) is evenly 1/4, DCW can 

halve the number of bit flips, on average, compared to 
conventional PCM. Also, by reducing bit flips per write 
operation, DCW can decrease the average power 
consumption, as shown in Table 1. Since conventional 
PCM consumes either SET power (PSET) or RESET power 
(PRESET) regardless of the previous datum when the input 
datum is 0 or 1, respectively, the average power 
consumption is (PSET+PRESET)/2. As a result, DCW can 
halve the average power consumption by (PSET+PRESET)/4 
just by skipping unnecessary bit programming. 

3.2 Flip-N-Write 
Even though DCW halves bit flips, on average, if all bit 

values of input data are different from bit values of 
previous data, the number of bit flips is N, where N is the 
data bit widths. Therefore, to further reduce bit flips, Flip-
N-Write introduces one additional bit, called a flip bit, that 
indicates whether stored data is inverted or not. 

// A: target address 
// D and D’: input and previous data 
// N: data bit width 
1: procedure Write(A, D) 
2:   D’ = Read(A);  
3:   for i=0, i++, i<N do 
4:     update a bit if D[i]!=D’[i] 
5:   end for 
6: end procedure 

Fig. 5. DCW algorithm. 
 

Fig. 6. Simplified block diagram of DCW [14]. 

Table 1. Average power consumption of conventional 
PCM and DCW [15]. 

CONVENTIONAL DCW Bit flip
POWER PROBABILITY POWER PROBABILITY

0→0 PSET 1/4 0 1/4 
0→1 PRESET 1/4 PRESET 1/4 
1→0 PSET 1/4 PSET 1/4 
1→1 PRESET 1/4 0 1/4 

Average 
power (PSET+PRESET)/2 (PSET+PRESET)/4 

 
// A: target address 
// D and D’: input and previous data 
// F and F’: new and previous flip bit values 
// N: data bit width 
1 : procedure Write(A, D) 
2 :   D’ = Read_Data(A) 
3 :   F’ = Read_Flip_Bit(A) 
4 :   if hamming_dist({D,0}, {D’,F’}) > N/2 
5 :     D = ~D 
6 :     F = 1 
7 :   else 
8 :     F = 0 
9 :   end if 
10:   for i=0, i++, i<N do 
11:     update a data bit if D[i]!=D’[i] 
12:   end for 
13:   update a flip bit if F!=F’ 
14: end procedure 

Fig. 7. Write algorithm of Flip-N-Write [15]. 
 

// A: target address 
// D: output data 
// F: flip bit value 
1 : procedure Read(A) 
2 :   D = Read_Data(A) 
3 :   F = Read_Flip_Bit(A) 
4 :   if F is 1 
5 :     D = ~D 
6 :   end if 
7 : end procedure 

Fig. 8. Read algorithm of Flip-N-Write [15]. 
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Figs. 7 and 8 describe how the Flip-N-Write scheme 
performs write and read requests, respectively. To perform 
a write request, Flip-N-Write reads previous data from the 
target addresses. Next, the Hamming distance of the 
previous data and flip bit from new input data and flip bit 
are calculated to determine the number of bit flips. If the 
Hamming distance is more than N/2, Flip-N-Write inverts 
the input data and sets the new flip bit to 1. Finally, only 
bit values of the input data that are different from bit 
values of the previous data are updated in the target cells. 
If a new flip bit is different from the previous flip bit, flip 
bit is also updated. To perform a read request, Flip-N-
Write reads previously stored data and the flip bit. Then, 
the data are inverted if the stored flip bit is 1. 

Fig. 9 shows logical blocks for the Flip-N-Write write 
data path. Two data from the read buffer and write buffer 
are compared, bit by bit, using XOR logic, and a bit vector 
presenting which bits are different is generated. The 
count1 logic calculates Hamming distances between read 
and write data that indicate the number of bit flips, to 
determine whether input data should be flipped or not. The 
SET/RESET enable signals are generated using data 
multiplexer output. Also, program-enable signals are 
generated using XOR logic output and count1 logic 
determination. 

To compare average bit flips in DCW and Flip-N-Write, 
the average number of bit flips can be calculated with the 
following equations: 
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where FDCW and FFlip-N-Write are average numbers of bit flips 
in DCW and Flip-N-Write, respectively. In the equations, 

the probability that both new and old bits are different is 
assumed to be 1/2. Thus, the probability of having i 

different bits between new and old data is ( )1/ 2 N N
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

. As 

shown in the second equation, the number of bit flips 
peaks at N/2 and decreases after this point, while DCW 
keeps increasing the number of bit flips. Fig. 10 plots the 
bit flip improvement with Flip-N-Write against the DCW 
scheme and the storage overhead of Flip-N-Write. As 
shown in the figure, improvement under Flip-N-Write is 
from 11% (32-bit data) to 25% (2-bit data). 

Therefore, Flip-N-Write obtains a further reduced 
number of bit flips, compared to DCW, by using only an 
additional flip bit. This is because the maximum number of 
bit flips in Flip-N-Write never exceeds N/2, since it inverts 
input data and sets a new flip bit value when the Hamming 
distance is over N/2. 

3.3 FlipMin 
FlipMin is a bit flip reduction technique that uses coset 

code [28, 29] when performing write and read requests. It 
encodes an input dataword into a vector that is actually to 
be stored in PCM cells while performing a write request. 
Also, it decodes a stored vector to an output dataword 
during a read request. Coset coding provides many vectors 
to the same dataword with extra bits. In case of k-bit 
dataword and n-bit vector with c-bit additional bits, i.e., 
c n k= − , a dataword and vector can be one of 2k and 2n 
strings of zeros and ones, respectively. This means one 
dataword of 2k can have a set with 2c vectors. FlipMin 
chooses only one vector among a set that is called a coset 
while encoding the dataword to minimize the number of 
bits. 

Fig. 9. Logical blocks of the Flip-N-Write data path
when data are 16-bit and the flip bit is 1 [15]. 

 

Fig. 10. Improvement with Flip-N-Write against DCW, 
and storage overhead for Flip-N-Write [15]. 

 
Dataword1 00 : Coset1 {0000,0101,1010,1111} 
Dataword2 01 : Coset2 {0001,0100,1011,1110} 
Dataword3 10 : Coset3 {0010,0111,1000,1101} 
Dataword4 11 : Coset4 {0011,0110,1001,1100} 

Fig. 11. Example of FlipMin’s coset coding. 
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Fig. 11 presents an example of FlipMin’s coset coding 
when datawords are two-bit and vectors are four-bit, i.e., 
extra bits are two-bit. FlipMin maps each dataword to a 
coset that consists of four vectors. When PCM wants to 
write data to cells, if the dataword to be written is 01 and 
the previously stored vector is 1001, FlipMin maps a 
dataword 01 to coset2, and chooses the vector 1011 that 
has the minimum bit flips, and stores it. When PCM wants 
to read data from the cells, if the stored vector at the target 
address is 0111, the vector is decoded into dataword 01. 

To generate cosets, FlipMin uses dual Hamming 
(72,64) code, called  punctured Hadamard code [27], that 
maps 8-bit data to 72-bit vectors with 64-bit parities. In the 
code, there are many vectors that have the same parity, i.e., 
28 vectors for one parity. Therefore, FlipMin considers a 
64-bit dataword as parity code and 72-bit vectors that have 
the same parity as cosets. When FlipMin writes a dataword 
to PCM cells, it maps the dataword to parity code and 
finds the vector with the minimum bit flips from a coset 
that has the same parity code. 

Fig. 12 shows the logical blocks for writing/reading in 
FlipMin. When PCM writes a dataword, the coset 
generator matrix maps the dataword to a set and generates 
coset elements. Then, PCM reads the previous vector from 
memory, and selects from coset elements the vector that 
has the minimum bit flips. This selected vector is written 
to memory. In contrast, when PCM reads a dataword, the 
vector read from memory is converted to the dataword 
through the decoding matrix. 

With coset coding, FlipMin can reduce bit flips 
further than both DCW and Flip-N-Write. Table 2 shows 
the average number of bit flips in FlipMin when 

datawords are four-bit. With DCW, the number of 
datawords that have no 1’s is one, and that have one 1 is 
four, and so on. Therefore, the average number of bit 
flips in DCW is ( )0 1 1 4 2 6 3 4 4 1 /16 2.× + × + × + × + × =  
With FlipMin, the average number of bit flips is 1.375, i.e., 
( )0 1 1 8 2 7 3 0 4 0 /16 1.375,× + × + × + × + × =  which is a 
31% reduction. For 64-bit datawords, the average number 
of bit flips in DCW, Flip-N-Write, and FlipMin are 32, 
28.82, and 24.48, respectively. Therefore, FlipMin reduces 
average bit flips by 24.5%, compared to DCW, which is 
significantly larger than the 9.93% in Flip-N-Write. 

3.4 CAFO 
Although DCW, Flip-N-Write, and FlipMin 

significantly reduce the number of bit flips, they do not 
consider the asymmetric nature of a PCM cell’s state 
change. Since RESET current pulse is more intense than 
the SET current pulse, PCM cell endurance is more 
dependent on the RESET current [24, 25]. Therefore, 
CAFO proposes a cost model considering the asymmetric 
nature of programming a PCM cell, and uses it to encode 
and decode data to reduce the overall cost of performing a 
write request. 

When comparing previous and input data, there are 
four different bit flip cases. CAFO labels the cost of these 
bit flip cases, which are 0→1, 1→0, 0→0, and 1→1, to a, 
b, c, and d, respectively and models the total cost of a write 
request, named C, with the following formula: 

 
 0 1 1 0 0 0 1 1C n a n b n c n d→ → → →= + + +            (3) 

 
where 0 1n → , 1 0 n → , 0 0 n → , and 1 1n →  are the number of a, b, c, 
and d bit flip cases, respectively. 

With this cost modeling, CAFO encodes input data to 
minimize the overall cost of performing a write request. It 
manipulates N-bit input data as an n by m matrix, where 
N n m= × . Each row and column has an additional 
auxiliary bit that represents its corresponding row or 
column and is inverted. Also, CAFO labels the gain as G, 
which is calculated by C- Cinverted where Cinverted is the cost 
of writing an inverted form of the input data. Therefore, a 
positive gain means that inverted input data have lower 
overall costs than un-inverted data. Fig. 13 shows an 
example of a gain calculation when a, b, c, and d are 1, 2, 

 

Fig. 12. Logical blocks of FlipMin [16]. 

Table 2. Average number of bit flips when datawords 
are four-bit [16]. 

DCW FlipMin 
# of 1’s # of words # of 1’s # of words 

0 1 0 1 
1 4 1 8 
2 6 2 7 
3 4 3 0 
4 1 4 0 

Bit flips 2.0 Bit flips 1.375 
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0, and 0, respectively. In the figure, gain G is 3, because C 
is 8, and Cinverted is 5. In this case, the inverted form of the 
input data, i.e., 01010101, has lower cost than the input 
data, i.e., 10101010. 

Fig. 14 presents the CAFO encoding algorithm. When 
PCM performs a write request, the cost, C, of each row is 
calculated by comparing input data and previous data in 
the row. After that, cost Cinverted of each row is calculated 
by comparing the inverted form of input data and the 
previous data in the row. Finally, the gain of each row, 
called G, is calculated, and CAFO inverts the row if G is 
greater than 0. CAFO repeatedly searches and inverts rows 
and columns that have positive gains until there is no row 
and column to be inverted. 

Fig. 15 presents the CAFO decoding algorithm. Each 
element of a data matrix has two auxiliary bits, i.e., one bit 
for the corresponding row and another bit for the 
corresponding column. If XORing these two bits results in 
1, this means only one of the corresponding row or column 
is inverted. Therefore, the elements of a data matrix where 
auxiliary bits have different values are inverted when PCM 
reads data from memory cells. 

This paper also proposes optimization of the CAFO 
encoding algorithm. The encoding algorithm shown in Fig. 
14 assumes the total write cost cannot be further reduced if 
every row and column has a zero or negative gain. 
However, it is possible to further reduce the cost of a write 
operation, even if no row or column has a positive gain. 
Fig. 16 shows an example of encoding optimization where 
a cell with 1 represents a bit that will be flipped because its 
value is different from the previous value. Although row 2 
and column 1 do not have positive gains, inverting row 2 
and column 1 further reduces the cost of the write 
operation from 5 to 3. Therefore, the condition that has to 
be met to further reduce the cost can be formulated as 
follows: 

 
 ,2 0r c r c

r S r S

G G g
∈ ∈

+ − >∑ ∑  (4) 

 
where S is the subset of rows, and gr,c is the gain from 
inverting the intersection cell at row r and column c. This 
formula is for inverting multiple rows and one column 
simultaneously. Inverting one row and multiple columns 
can be done by a formula similar to Eq. (4). In addition, 
since auxiliary bits are also stored in PCM cells, the cost of 
writing the auxiliary bits should be considered when 
inverting rows and columns. 

Maddah, et al. [17] compared bit flip reduction in Flip-
N-Write, FlipMin, and CAFO where they assumed them to 
have the same storage overhead, and also assumed a, b, c, 
and d to be 1, 1, 0, and 0, respectively. As a result, CAFO 
showed more bit flip reduction than Flip-N-Write and 
FlipMin when input data were 64B, 128B, and 512B. Also, 

 

Fig. 13. Gain calculation when a, b, c, and d are 1, 2, 0, 
and 0, respectively. 

 
1: Invert = True 
2: ColumnCheck = False 
3: while Invert do 
4:   if PositiveGainRows() then 
5:     Flip Rows with Positive Gain 
6:   else 
7:     if ColumnCheck then 
8:       Invert = False 
9:       break 
10:     end if 
11:   end if 
12:   if PositiveGainColumns() then 
13:     Flip Columns with Positive Gain 
14:     ColumnCheck = True 
15:   else 
16:     Invert = False 
17:   end if 
18: end while 

Fig. 14. Encoding algorithm of CAFO [17]. 

 

// VR : Auxiliary bit for a row 
// VC : Auxiliary bit for a column 
// b[n][m] : Data block 
1: for i=0, i++, i<n do 
2:   for j=0, j++, j<m do 
3:     if (VRi + +  VCj) then 
4:       Read ~b[i][j] 
5:     else 
6:       Read b[i][j] 
7:     end if 
8:   end for 
9: end for 

Fig. 15. Decoding algorithm of CAFO [17]. 
 

Fig. 16. Example of encoding optimization when a, b, c, 
and d are 1, 1, 0, and 0, respectively. A cell with 1 
represents a bit value that is different from the 
previous value. 
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CAFO showed a greater cost reduction than Flip-N-Write 
and FlipMin with various values of a, b, c, and d. In 
addition, even if the CAFO cost model was adopted in the 
compared schemes when encoding input data, CAFO 
achieved greater cost reduction than the other schemes.4. 
Experimental Setup 

We evaluated lifetime extension from DCW, Flip-N-
Write, and CAFO compared to conventional PCM. Table 3 
shows the storage overhead of each scheme when the data 
bit width is 64 bits. DCW does not need any additional 
storage, because it just skips unnecessary bit updates 
without encoding data. Flip-N-Write uses a single flip bit 
to mark whether stored data are inverted or not. CAFO 
uses 16 auxiliary bits to handle 64-bit data as an eight-by-
eight matrix. 

Table 4 shows the system configuration for tracing a 
stress benchmark [7] that is a mixture of eight write-
intensive benchmarks of SPEC CPU2006 [21] , i.e., milc, 
GemsFDTD, leslie3d, astar, soplex, zeusmp, omnetpp, and 
bwaves. The stress benchmarks were traced with 

MARSSx86 [22] on the system configurations described in 
Table 4. 

In the experiment, we assumed memory access 
granularity of 64 bytes. A block was replaced by a spare 
block when it failed to write data [12, 16]. The write 
endurance of each memory cell followed a Gaussian 
distribution where the mean is 108 and the standard 
deviation is 107. Also, we used perfect wear-leveling that 
equally wears out PCM blocks so as to not consider the 
effect of the wear leveling algorithm assumed by Seong et 
al. [11]. Moreover, we modified DRAMSim2 [23] to 
examine the write endurance of each memory cell. 
Furthermore, since the lifetime estimation was 
significantly time-consuming, we applied the projection 
method described by Jacobvitz et al. [16] to shorten the 
simulation time. 

5. Performance evaluation 

Table 5 shows the number of bit flips in each scheme 
after 10 million write requests and their reduction rates, 
compared to conventional PCM. In conventional PCM, the 
number of bit flips reached 51.2 billion, since it flips all 
bits regardless of the previous data. DCW showed a 
significantly reduced number of bit flips because the input 
data of a stress benchmark frequently has all 0’s or all 1’s 
due to data initialization. In our experiment, these cases 
were more than 50% of the first 10 million write requests 

Table 3. Compared schemes and their storage 
overhead. 

Scheme Storage overhead 
Conventional 0% (0 bits/64 bits) 

DCW 0% (0 bits/64 bits) 
Flip-N-Write 1.56% (1 bit/64 bits) 

CAFO 25% (16 bits/64 bits) 
 

Table 4. System configuration used for tracing a stress 
benchmark. 

Structure Configuration 
CPU x86-64 out-of-order core at 3.6 GHz 

L1 D-Cache 128 KB, 8-way associative, 64 B line size 
L1 I-Cache 128 KB, 8-way associative, 64 B line size 
L2 Cache 2 MB, 8-way associative, 64 B line size 

PCM 16 GB 
 

Table 5. The number of bit flips in each scheme after 
performing 10 million write requests from a stress 
benchmark. 

Scheme Bit flip (x109) Reduction 
Conventional 51.2 - 

DCW 7.7 85.0% 
Flip-N-Write 7.3 85.7% 

CAFO 5.8 88.7% 
 

 

 

Fig. 17. Percentage of blocks still usable from the total blocks as write requests of a stress benchmark are 
performed. In addition, PCM lifetime extension in bit flip reduction schemes compared to the conventional PCM. 
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from the stress benchmark. Flip-N-Write further reduced 
bit flips by 85.7% by just adding one additional flip bit. 
CAFO showed an even more improved bit flip reduction 
rate, i.e., 88.7%. 

Fig. 17 shows the number of blocks still usable out of 
the total number of memory blocks as write requests were 
performed. In the figure, each scheme for lifetime 
extension was calculated by the number of performed 
write requests until an error occurs, compared to 
conventional PCM. DCW improved PCM lifetime by 4.72 
times, compared to conventional PCM. Flip-N-Write and 
CAFO further enhanced lifetime by 5.00 times and 6.84 
times, respectively. Although CAFO showed the best 
performance in terms of bit flip reduction rate and lifetime 
extension, its storage overhead, i.e., 25%, was larger than 
the other schemes. 

6. Summary 

As more computing systems become multi-core 
processor systems, larger memory capacity is needed, and 
thus, PCM has gained attention as the promising 
alternative for main memory due to its high scalability. 
However, because of its write endurance problem, PCM 
cannot be directly adopted as main memory. Therefore, in 
this paper, we explored existing schemes to resolve the 
endurance problem by reducing the number of bit flips per 
cell. 

First, we described the PCM operating principles in 
detail. PCM employs a phase change material called a 
chalcogenide alloy. The alloy has two different physical 
states: the crystal state and the amorphous state. These two 
states have different resistivity. The crystal state shows 
low resistivity (1kΩ), whereas the amorphous state shows 
high resistivity (1MΩ). With this resistivity difference, 
data can be stored in the cell. To change the cell to the 
crystal state, the SET current pulse, which has moderate 
power but long duration, heats the cell. Conversely, the 
RESET current pulse, which has high power but a short 
duration, changes the cell to the amorphous state. However, 
as the cell is repeatedly programmed, it becomes more 
unreliable, and eventually, cannot change states any more. 

Then, we explored existing bit flip–reduction schemes. 
These schemes include DCW, Flip-N-Write, FlipMin, and 
CAFO. The DCW scheme skips bit programming of 0→0 
and 1→1 because these situations do not need it (the 
previous bit value is the same as the bit value of the data to 
be stored). Flip-N-Write adds one additional bit, called a 
flip bit, to further reduce bit flips. When writing data, Flip-
N-Write inverts input data and sets a flip bit when the 
Hamming distance between the input data and the previous 
data is over N/2 to limit the maximum number of bit flips 
under N/2. FlipMin uses coset coding to provide many 
vectors that encode candidates for the same input data. To 
generate vectors, FlipMin uses dual Hamming (72,64) 
code. When performing a write request, FlipMin maps 64-
bit input data to parity with the Hamming code, and finds a 
preferred element from a set that has the same parity code. 
The CAFO scheme considers asymmetric PCM cells when 
encoding data to reduce the overall cost of performing a 

write request. It manipulates input data as a matrix, and 
continuously inverts a row or a column if inverting incurs 
less cost than before, until there is no row or column to be 
inverted. 

In addition, these schemes were examined to compare 
performance in terms of bit flip–reduction rate and lifetime 
improvement. For bit flip–reduction rate, the number of bit 
flips in these schemes was compared after executing 10 
million write requests of a stress benchmark. DCW, Flip-
N-Write, and CAFO showed a significantly reduced 
number of bit flips, compared to conventional PCM, i.e., 
85.0%, 85.7%, and 88.7%, respectively. Also, lifetime 
extension of each scheme was calculated by the number of 
write requests until an error occurs, compared to 
conventional PCM. As a result, DCW, Flip-N-Write, and 
CAFO improved the lifetime of PCM by 4.72, 5.00, and 
6.84 times, respectively, compared to conventional PCM. 
Although CAFO showed the best performance in terms of 
bit flip reduction rate and lifetime extension, its storage 
overhead, i.e., 25%, was larger than other schemes. 
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