• Title/Summary/Keyword: Dipole Model

Search Result 233, Processing Time 0.026 seconds

Radiated Electromagnetic Field Calculation due to Arc Discharge according to Speed of High Speed Train (고속철도의 속도에 따른 아크에 의한 전자파 방사 계산)

  • Han, In-Su;Lee, Tae-Hyung;Cho, Hong-Shik;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.98-100
    • /
    • 2011
  • High speed Train Systems are the energy supplied system via the pantograph through which the voltage and the current supplied by the catenary wire flow. The arc discharges generate owing to the contact loss between the catenary and the pantograph, and the electromagnetic fields radiate. There are many different phenomena between the static charges and the moving charges in view of the radiated electromagnetic fields. To calculate the electromagnetic filed about the moving charges, it is necessary to adapt Lorentz transformation. Actually, the particle which moves near the speed of light has the relativisitic phenomena. In addition, it is necessary to predict the electromagnetic field because the radiated electromagnetic field takes effect on the near electronic devices and the human beings. In this paper, we model the arc discharge into the dipole antenna model, adapt Lorentz transformation to the case that the electric railway cars move, and calculate the radiated electromagnetic field. By the calculation, we take the basis upon the electromagnetic prediction, and apply to the future research.

  • PDF

Study on Separation Distance to Protect Radio Service from Inductive System (유도성 시스템으로부터 무선기기 보호를 위한 이격 거리에 관한 연구)

  • Lee, Il-Kyoo;Shim, Yong-Sup;Min, Kyoung-Il;Cha, Jae-Sang;Lee, Kyong-Gun
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.103-108
    • /
    • 2011
  • This paper is related radio interference from inductive system to radio device in home and industrial environment according to increasing the usage of inductive system. In order to analyze interference from magnetic field strength of inductive system, interference model was suggested and explain the method to calculate separation distance by using conversion that from magnetic field strength to magnetic dipole moment based on suggested interference model. Also, scenario that interference occur between inductive system and radio device was shown and the separation distance between inductive system and radio device was calculate with that scenario. The suggested method in this paper will be used to secure the compatibility between inductive system and radio device.

Effects of asymmetric plasmasphere on MHD waves in a three-dimensional dipolar magnetosphere

  • Roh, Sang-Il;Lee, Dong-Hun;R. E. Denton;K. Takahashi;J. Goldstein;A. Keiling;R. A. King;K. Yumoto
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.39-39
    • /
    • 2003
  • The plasmaspheric region shows relatively strong longitudinal asymmetry in the sense that the location of the plasmapause and the density distribution significantly vary with respect to local time, and this asymmetry effect has been neglected in previous magnetospheric ULF wave studies. In this study, we numerically examine the MHD wave properties of field line resonances (FLRs) and Pi2 pulsations when the inner magnetosphere is assumed to be asymmetric. We use the dipole magnetic field model, but our density model is based on. observational data from the IMAGE satellite. We assume an impulsive input in the magnetotail, which can be associated with a substorm onset. Our results suggest that local FLRs appear in both the radial and azimuthal oscillations owing to the asymmetry. Plasmaspheric Pi2 signals appear in the compressional component, but they are more strongly affected by ambient plasmaspheric structure than the FLRs. We compare our results with the observational data of Pi2 events.

  • PDF

A Fast Scheme for Inverting Single-Hole Electromagnetic Data

  • Kim Hee Joon;Lee Jung-Mo;Lee Ki Ha
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.167-169
    • /
    • 2002
  • The extended Born, or localized nonlinear approximation of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. Occam's inversion (Constable et al., 1987) is an excellent method for obtaining a stable inverse solution. It is extremely slow when combined with a differential equation method because many forward simulations are needed but suitable for the extended Born solution because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the inversion. In addition, the If formulation also readily contains a sensitivity matrix, which can be revised at each iteration at little expense. The inversion algorithm developed in this study is quite stable and fast even if the optimum regularization parameter Is sought at each iteration step. Tn this paper we show inversion results using synthetic data obtained from a finite-element method and field data as well.

  • PDF

A 3D Ray-Tracing Propagation Model for Analyses on the Indoor Polarization Diversity Scheme (3차원 광선 추적법을 이용한 실내 환경에서의 편파 다이버시티 성능 분석에 관한 연구)

  • 홍순학;석우찬;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.766-776
    • /
    • 1999
  • In this paper to evaluate the performance of the polarization diversity and the space diversity in the indoor environment, we used 3D Ray-tracing simulation. This model is capable of predicting small scale fading characteristics of the channel for evaluating the performances of both the polarization and the space diversity scheme. The measurement and simulation results show that the polarization diversity and the space diversity are expected to be efficiently used for the indoor environments. Moreover, the results show that the proposed polarization diversity technique using directional dual polarization microstrip array antennas has more diversity gain than the conventional polarization and space diversity using dipole antenna.

  • PDF

The Detection Method of a Target Position above a Ground Medium using the Buried Antenna (지하 매설 안테나를 이용한 지상 표적의 위치파악 기법)

  • 조정식;김채영;이승학;정종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.521-531
    • /
    • 2001
  • This paper presents the extraction scheme of the scattered waves by a target above the ground using the buried antenna in a lossy and dispersive medium. The half wave dipole antennas are used to transmit and to receive a signal. The transmission line model as a feeding model is considered to take into account the effect of transmission line in a real system. The ground is modeled by the 2nd order Debye approximation with the dispersion and loss. PLRC algorithm and DPML as absorbing boundary condition are utilized to apply the 2nd order Debye approximation to FDTD. To extract the scattered wave, in addition, we employed the delay time extraction algorithm. The simulations are conducted to observe the variation of magnitude in scattered wave and detection of target position according to the change of moisture content of the lossy medium.

  • PDF

Geomagnetic Paleosecular Variation in the Korean Peninsula during the First Six Centuries (기원후 600년간 한반도 지구 자기장 고영년변화)

  • Park, Jong kyu;Park, Yong-Hee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.611-625
    • /
    • 2022
  • One of the applications of geomagnetic paleo-secular variation (PSV) is the age dating of archeological remains (i.e., the archeomagnetic dating technique). This application requires the local model of PSV that reflects non-dipole fields with regional differences. Until now, the tentative Korean paleosecular variation (t-KPSV) calculated based on JPSV (SW Japanese PSV) has been applied as a reference curve for individual archeomagnetic directions in Korea. However, it is less reliable due to regional differences in the non-dipole magnetic field. Here, we present PSV curves for AD 1 to 600, corresponding to the Korean Three Kingdoms (including the Proto Three Kingdoms) Period, using the results of archeomagnetic studies in the Korean Peninsula and published research data. Then we compare our PSV with the global geomagnetic prediction model and t-KPSV. A total of 49 reliable archeomagnetic directional data from 16 regions were compiled for our PSV. In detail, each data showed statistical consistency (N > 6, 𝛼95 < 7.8°, and k > 57.8) and had radiocarbon or archeological ages in the range of AD 1 to 600 years with less than ±200 years error range. The compiled PSV for the initial six centuries (KPSV0.6k) showed declination and inclination in the range of 341.7° to 20.1° and 43.5° to 60.3°, respectively. Compared to the t-KPSV, our curve revealed different variation patterns both in declination and inclination. On the other hand, KPSV0.6k and global geomagnetic prediction models (ARCH3K.1, CALS3K.4, and SED3K.1) revealed consistent variation trends during the first six centennials. In particular, the ARCH3K.1 showed the best fitting with our KPSV0.6k. These results indicate that contribution of the non-dipole field to Korea and Japan is quite different, despite their geographical proximity. Moreover, the compilation of archeomagnetic data from the Korea territory is essential to build a reliable PSV curve for an age dating tool. Lastly, we double-check the reliability of our KPSV0.6k by showing a good fitting of newly acquired age-controlled archeomagnetic data on our curve.

A Study on Topographic Effects in 2D Resistivity Survey by Numerical and Physical Scale Modeling (수치 및 축소모형실험에 의한 2차원 전기비저항 탐사에서의 지형효과에 관한 연구)

  • Kim Gun-Soo;Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Recently, resistivity surveys have been frequently carried out over the irregular terrain such as mountainous area. Such an irregular terrain itself can produce significant anomalies which may lead to misinterpretations. In this study, topographic effects in resistivity survey were studied using the physical scale modeling as well as the numerical one adopting finite element method. The scale modeling was conducted at a pond, so that we could avoid the edge effect, the inherent problem of the scale modeling conducted in a water tank in laboratory. The modeling experiments for two topographic features, a ridge and a valley with various slope angles, confirmed that the results by the two different modeling techniques coincide with each other fairly well for all the terrain models. These experiments adopting dipole-dipole array showed the distinctive terrain effects, such that a ridge produces a high apparent resistivity anomaly at the ridge center flanked by zones of lower apparent resistivity. On the other hand, a valley produces the opposite anomaly pattern, a central low flanked by highs. As the slope of a terrain model becomes steeper, the terrain-induced anomalies become stronger, and moreover, apparent resistivity can become even negative for the model with extremely high slope angle. All the modeling results led us to the conclusion that terrain effects should be included in the numerical modeling and/or the inversion process to interpret data acquired at the rugged terrain area.

Exploiting W. Ellison model for seawater communication at gigahertz frequencies based on world ocean atlas data

  • Tahir, Muhammad;Ali, Iftikhar;Yan, Piao;Jafri, Mohsin Raza;Jiang, Zexin;Di, Xiaoqiang
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.575-584
    • /
    • 2020
  • Electromagnetic (EM) waves used to send signals under seawater are normally restricted to low frequencies (f) because of sudden exponential increases of attenuation (𝛼) at higher f. The mathematics of EM wave propagation in seawater demonstrate dependence on relative permeability (𝜇r), relative permittivity (𝜀r), conductivity (𝜎), and f of transmission. Estimation of 𝜀r and 𝜎 based on the W. Ellison interpolation model was performed for averaged real-time data of temperature (T) and salinity (S) from 1955 to 2012 for all oceans with 41 088 latitude/longitude points and 101 depth points up to 5500 m. Estimation of parameters such as real and imaginary parts of 𝜀r, 𝜀r', 𝜀r", 𝜎, loss tangent (tan 𝛿), propagation velocity (Vp), phase constant (𝛽), and α contributes to absorption loss (La) for seawater channels carried out by using normal distribution fit in the 3 GHz-40 GHz f range. We also estimated total path loss (LPL) in seawater for given transmission power Pt and antenna (dipole) gain. MATLAB is the simulation tool used for analysis.

An Analysis of Inelastic Neutron Scattering by Liquid Methane

  • Chung, Chang-Hyun;Shin, Won-Kee;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.265-278
    • /
    • 1973
  • The incoherent neutron scattering cross section of molecular liquids is analyzed using a damping function model for correlation functions of molecular translations and rotations. The present approach is different from recent works in that the scattering function is evaluated directly, not through the intermediate scattering function. The damping fuction is determined from a simple relation between its long-wavelength limit and the generalized frequency distribution function, and translation-rotation couplings are assumed to be neglected. A physical model is used for the translational motions of center-of-mass of a molecule, including properly its short-time and long-time behaviors. A simple model for the rotational motions is suggested which relates the damping function to the Fourier transform of the dipole correlation function, or equivalently, the infrared vibrational absorption spectrum. Theoretical absolute scattering intensities are computed for liquid methane and shown to be in satisfactory agreement with both thermal and cold neutron measurements.

  • PDF