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Abstract

The incoherent neutron scattering cross section of molecular liquids is analyzed
using a damping function model for correlation functions of molecular transla-
tions and rotations. The present approach is different from recent works in
that the scattering function is evaluated directly, not through the intermediate
scattering function. The damping fuction is determined from a simple relation
between its long-wavelength limit and the generalized frequency distribution
function, and translation-rotation couplings are assumed to be neglected. A
physical model is used for the translational motions of center-of-mass of a
molecule, including properly its short-time and long-time behaviors. A simple
model for the rotational motions is suggested which relates the damping function
to the Fourier transform of the dipole correlation function, or equivalently, the
infrared vibrational absorption spectrum. Theoretical absolute scattering inten—
sities are computed for liquid methane and shown to be in satisfactory agree—

ment with both thermal and cold nentron measurements.
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1. Introduction

The inelastic neutron scattering experiment

is one of most powerful techniques which can
provide information about atomic and . mole-

cular processes in liquids, especially when the
neutron energy is comparable to the energy
levels of the system. Many of these processes
can be discussed in terms of time correlation
functions, whose basic properties are by now
The time
correlation functions in classical simpie liqﬁids
have been quite extensively studied by analy-

well known in the literaturel’®,

zing inelastic neutron scattering and computer
Altho-
ugh the formal theory of neutron scattering

molecular-dynamics experiments® ¥.

by molecular liquids and solids is well deve-
loped® ©, practical calculation methods for
the scattering cross sections are still rather
limited. Recent theoretical studies of neutron
scattering by molecular liquids have been
based on an indirect approach in which the
scattering function is evaluated after the
intermediate scattering function is calculated
by using mostly the information contained in
the frequency distribution function™®.

The purpose of this paper is to present a
direct method for a detailed analysis of the
double differential incoherent cross section of
molecular liquids. The calculations are based
on the correlation function formalism develo-
ped by Martin and Kadanoff, which was
successfully applied to the analysis of the
correlation functions obtained by computer
experiments and inelastic ncutron scattering
by a simple liquid®. The method involves
specific assumptions which are neccessary to
obtain numerical results. The validity of these
assumptions will be examined quantitatively

for liquid methane using the available ther- -

mal'® and cold' '® neutron data.
In the present work the main problem is to
determine a frequency and wavelength depen-

dent damping function, which should bec ap-
propriate to describe the rotational motions as
well as the translational motions of a liquid
molecule. Through the use of dispersion rela-
tion for the self correlation function one ob-
tains sum-rule conditions on the damping
function . Moreover, the damping function
is constrained to give the proper self-diffusion
coefficient in the low-frequency and long-
wavelength limit. The central approximation
for determining the rotational contribution of
the damping function will be made from the
relation between the translational contribution

‘and the Fourier transform of the velocity

autocorrelation function of a simple liquid in
the long-wavelength limit® & . The advan-
tage of this approach will be seen in that
even simple assumptions regarding the dam-
ping function, so long as its known proterties
are not violated, one can obtain diretly quite
reasonable results for the incoherent scattering
function. As we will see later, our approach

~ will make use of the rotational -correlation

function and leads to satisfactory results as
comparable as those of Agrawal and Yip”
and of Sears®, whose methods are indirect
In Section 2 we will present a brief sum-
mary of Martin’s formalism for the self
correlation function and discuss the const-
In the next
section we will introduce a simple model
description for the damping function of a
molecular liquid and make specific assump-

raints on the damping function.

tions about the frequency dependence of the
damping function and other assumptions inhe-
rent in the present work. In Section 4 we
will carry out specific calculations for liquid
methane and compare with both thermal and
cold neutron scattering data. The overall

results are then discussed in the final section
where we will examine in some detail the
validity of our assumptions with several con-
cluding remarks. '
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2. Correlation Function Formalism

The method we will use to evaluate the
self correlation function is ecesentially based
on the linear rosponse theory of Martin and
Kadanoff” in which one writes a dispersion
relation for a complex susceptibility x(x, @).

22[1—x(x, 0)/x((k, 2)) '=7262D(x,2). (1)
where z is a complex variable which will
become real by taking the limit of z=wtie
and D(x,z) is called a
(D we
have omiited the z=0 limit of the left hand
side, since we know that it is zero for the

as ¢ goes to zero,
complex damping function. In Eq.

self correlation function®. We also know that
the z=0 limit of the susceptibility of the self
correlation function is the inverse of the sys-
tem temperature®.

The susceptibility function is defined by

- ! . !
xr )= Lol H(neD) @
where . ‘ .
x7(k, w)=S_ dte"“”%<[e"f-'<'),
RO > (3)

represents the response function for the self
correlation function. In Eq. (3) ?(t) is the
position of the molecule at time ¢, the bracket
<X) indicates the average of X over an equi-
librium distribution function, and the bracket
[, Jr» denotes the Poisson bracket.

By introducing a damping function which is
real and defined by

DGs, )= 4ol D/ 0"

- T o —z

@

into Eq. (1) and the incoherent scattering
function S(x, )%,

SCk, @)=x"Cx, w)/(npw), (5
which is established through the fluctuation-
dissipation theorem!®, we obtain the follo-

wing relation between S(x ) and D'(x w);

1D/ 0o p 2

o

e 0/ Cr, et 117, (6)

where p denotes the principal value integral.
In Eq. (5) B is the inverse of the tempera-
ture in energy units.

If one can determine an appropriate dam-
ping function which satisfies as many const-
raints as possible, one can evaluate directly
the séattering function. In other words, our
problem is by now to impose the necessary
contraints on the damping function using all
This method is
which
is basically concerned with the intermediate
scattering function instead of the scattering
function itself.

the information available.
different from the usual procedures—®

The first class of constraints on D/(x o) is
obtained by making a large z expansion of
Eq. (1). This leads to relations between the
frequency moments of x” and D’/ among which

the first two relations are
S—,,, d: D'(x,0)= ﬁlz S~~S(x, w)o’de
=C2 (k) @)

§ 22 D (r, o) = [0 (62102

k)

—1 S_:a)‘S(lr, ®do. @®

As another constraint D’(x, ®) has to satisfy
the hydrodynamic limit® 15
7 tim Hm{w?S(, @)/ B3=D'(0,00=D (9

=0 g0
where D is the self-diffusion coefficient. We
also know that
ligroleZS(x, o)/ =f(w)/28M o

where M is the masg of the molecule, and
f(w) is the frequency distribution function.
is the
Fourier transform of the velocity autocorrela-

For a monatomic classical liquid f(w)

tion function® ¥,

In the incoherent approximation and for
classical calculations the double differential
scattering cross section of a hydrogenous

stance per wolscule is given by *'0
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d’o __ 1oy ( K1\ -spor
dQde ~ Ax ( K )e e

e‘ﬁh'x'G(ﬁ) 18M S(‘, w), (11)
where # is the number of hydrogen atoms per
molecule, ¢,=81 barns is the bound proton
cross section, &; and & are the incident and
scattered neutron wave numbers, h;=h(;,—;:)
and ho=h(w;—w;) are neutron momentum and
energy gains, We will assume that the scat-
tering contributions from other atoms in the
molecule are either negligible or can be easily
added®. The first exponential in Eq. (11)
represents the detailed balance factor and the
second one is the generalized recoil factor
which is given by

G(p=2{ dof(w)Lcosh(hpo/2)—1)

/(25 Ysinn( REe-) (12)
For monatomic systems G(g) is usually very
close to unity but for molecular systems it
can be quite different from unity. For high
temperatures the integrand of Eq. (13) redu-
ces to f(0), which means that G(g) is just
the zeroth moment of f(w). This moment will
be seen later to determine the normalization
condition for the generalized frequency distri-
bution function f(w). In classical calculations
S(x, @) is even in frequencies, and also even
in wavenumbers due to translational and

rotational invariance in a liquid.

3 Damping Function Model

The correlation function formalism using
the damping function which is constructed to
satisfy various constraints connected with
measurable or calculatable quantities has been
successful in analyzing the correlation func-
tions in a simple liquid. In this section we
will attempt to extend the same approach to
a molecular liquid by considering a pheno-
menological model for the damping function
which contains the information about rotational
motions in addition to translational motions

It is reasonable to assume that translational
motions in a molecular liquid are the same as
the atomic motions in a simple liquid!™®.
We have seen from the analysis of the self
correlation function in a simple liquid that the
damping function does not show a strong
wavelength dependence as compared with the
damping function associated with the density
correlation function. In other words, a gen-
eralized self-diffusion coefficient, which is the
damping function for the self correlation func-
tion, exhibits smaller variations with the
wavenumber in comparison with a genera-
lized viscosity coefficient® . For the moment
we will assume that the translational damping
function associated with the translational
motions has no wavenumber dependence.
From Eq. (6) and Eq. (10) we have

D’ (0, 0)=nf(w)/28M=D'(x, ®) s
where the second equality is the result of our
assumption. As a specific example of the
damping function without any wavenumber
dependence, the translational damping func-
tion given by

D/(x, @) =D[(0*— 0>+ (/)] (4D

D=w?/gMx, (15)
and its corresponding frequency distribution
function

ft(w)z_yzr_ ol ((o*—w:D)*Ha/c)?1™" (16)

Tt

are found to describe satisfactorily the fre-
quency spetrum obtained from the computer
molecular-dynamics experiments and the in-
coherent scattering function for a simple
liquid® 12-2v,

In a similar way we will assume that the
rotational damping function D,’(r, w) associa-
ted with the rotational motions be obtained
from the rotational contribution of the gene-
ralized frequency distribution function through
the relation.

D, (k, w)=nf,(w)/28M. an
We may introduce a wavenumber dependence
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Fig. 1. Rotational correlation functions for liquid methane at 98°K,
transform of infrared absorption band (solid) and result of the
model given by Eq. (30) and (81) (dashed). Dimensionless time

is defined as t*=v1/Ipt.

into the model parameters in the damping
function, if possible, as done for D/,/(x,w)
later in Sec. 4.

At this stage we will assume that the coup-
lings between the different degrees of free-
This means that the

is additive,

dom can be ignored®.
frequency distribation function
being the sum of contributions from transla-
tions, rotations, and vibrations. Denoting each
contribution by f.(0), f,(»), and f,(w) respe-
ctively, we have
fl@)="(w)+f, (@) +f. (o). (18)
We will also ignore the vibrational motions,
since thermal neutrons cannot excite the int-
ramolecular vibrations. Then using Eq. (13)
and (18), we obtain
D' (x, w)=D/(x, @)+D,'(r, w). a
The rotational frequency distribution func-
tion f,(w) can be shown to be related to the

dipole correlation function Fi(¢) according to
Ty 133 16y 22)

f@=282Mp-2—{ " at cos wtF(t) (200

where & is the interatomic bond. Notice that
f.(0) is determined solely by Fi(¥), not by
higher order rotational correlation functions.
This is the direct consequence of the Gaussian
approximation!” 2 2 of the rotational width
function occuring in the intermediate scatte-

ring function. For isotropic rotations one has

-

F()=<b(®)-5(0)>/b* 2D
where l?(t) changes its direction but its mag-
nitude & remains constant, as the molecule
rotates, because we ignore the intramolecular
vibrational effects, Then the dipole correla-
tion function is entirely determined by the
molecular reorientational motions. This func-
tion can be calculated using various phenome-
nological models®” *® Gordon? has shown
that Fi(#) can be obtained from the Fourier
transform of a vibrational absorption band,
using a time~dependent formulation of infra-
red absorption. Ignoring the coupling of int-
ernal vibrations of different molecules, one
can show that

FO=u®-w(>= | docosoilla) (22)

where ;_f(t) is the dipole moment of the mole-
cule at time £, and /]\Cw) is the normalized
spectrum centered about the vibration frequen-
cy. Thus from Eq.(20) and Eq. (22) we
have

f(@)=2 6" MpuLw). (23)

Now we will examine the normalization
condition for D/(x,w). Agrawal and Yip?
has shown that the normalization for f(w) in
a hydrogenous substance is
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Fig. 2. Comparision of the frequency distribution function of liquid
methane, the result of Agrawal and Yip (dashed) and the present
model calculated using Eqs. (16) and (82) (dashed) at 98°K in ab-
solute scales, and the result extracted from measurements on
s0lid methane at 22°K, normalized to an area of 5 (circles).
The broken line represents the translational contribution

§, dofto)=M/m, (24

where m, is the proton mass, by considering
the short time behavior of the complex width
function of the intermediate scattering func-
tion. They have also derived the normaliza-
tion condition for each contribution of f(w)
as

M/my=1+—— DL =" duf 0

+], dof.Co)+{; durce). @

In Eq. (25) M, is the effective rotational
mass, which is 37/2b% with [ being the mo-
ment of inertia, for a spherical molecule like
methane, and M, is the effective vibrational
mass. By ignoring the vibrational effects and
using Eq. (17) the normaliozation condition
for the damping function becomes

§- 2e-tp/Ce ) 4Dk )

=1+t~ VoM. (26

Notice that by neglecting the vibrational
effects our damping function will not be ade-
quate at high energies.

In the present work we will use Eq. (14D
for the translational damping function. The
physical meaning of this model can be seen
from the translational frequency distribution
function, Eq.(16) and its corresponding velo-
city autocorrelation (See Eq. (28))" 202D,
In this model a molecule is pictured as moving
in a kind of potential cage fromed by its
neighbors, thus oscillating initially and then
the cage is relaxing in time due to the res-
toring forces, which causes the molecule to
diffuse into a frictional background. Notice
that D./(», ») satisfies the first two sum rules
given by Eq. (7) and Eq. (8), when we
treat S(x, ) as describing only the transla-
tional motions of the center-of-mass of a
molecule. Furthermore, we can introduce a
wavenumber dependence into D,/(x,w) using
Eq. (8),if the fourth freduency moment of
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Fig. 3. Comparison of calculated and mea-
sured double differential scattering
cross section of liquid methane at
98°K, in units of barns/molecule A
steradians. Each curve corresponds
to a fixed incident neutron wave-
length 2; and scattering angle 4,
including incident neutron spect-
rum effect.

S(k, ) can be evaluated from the molecular
expression. It is, however, required to know
the pair distribution function and the inter-

molecluar potential® . The £=0 limit of e,
can be obtained from

0:=pMlim [+ Sj_dw WSCe, )] @n

which also needs the same information. How-
ever, by applying the law of corresponding
states to the value for liquid argon®®, we
have w,=1.1X10" sec™! for methane, which
will be needed later.

We may interpret Fi(t) as the rotational
analog of the velocity autocorrelation function
connected with the translational motions of
the center-of-mass of the molecule. The

k(AT

. 4.0 39
100 4]’7 T T

L3
=1.08 A
gol_ Ao

0=41.9deg

N B VI WX -3

Ttx,A,0)

15 19 2.3
Ath)

velocity autocorrelation function ¢(¢) corre-
spording to the f,(e) of Eq. (16) is given

by,
P(t)=e” 'Z:T(cos!?.t-ksinﬂ,t/ZQ,r,) (28)
where

‘ng-—_wtz_'zl;"z‘ ‘ (29)
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ARBITRARY INTENSITY

TIME OF FLIGHT .usec/m

Fig. 4. Comparison of calculated and measured double differential scat-
tering cross section of liquid methane at 98°K, in units of barns
m/molecule usec steradians at a fixed scattering angle and the
same incident neutron energy of 4.87 MeV. Theoretical results
are averaged over the incident neutron spectrum. Dashed curve
at 6-90° corresponds to the 7,(0) half of the value from Eq. (15).
The small triangles indicate the position and width of the inci-

dent spectrum.

It is seen that ¢(#) exhibits damped oscil-
lations in time, when Q,> 0, whereas Fi(tD
for a spherical molecule does not become
negative. It can be shown, however, that
¢(t) remains positive, if Q,2< 0. The general
behavior of Fi(t) from optical line shape
data® or various models?® ?*® indicates that
it decays to zero as f—co. Though we can
use the Fi(?) obtained from the measurements
or the one derived from a realistic model like
a Langevin diffusion model?® in order to calcu-
late D,’(x, »), we may consider a simple ana-
lytic model for its mathematical simplicity and
convenience of physical interpretation. The
principal value integral appearing in Eq. (6)
can be troublesome, if we use the Fy(¢) from
the observed spectrum. The Fourier transform
of the Fi(?) from the Langevin model also
requires a numerical evaluation as well as its
principal value integral. A simple exponential
form for Fi(?) is good only for long times.
Besides, it cannot satisfy the normalization

condition for D,’(x,®) in Eq. (26).

We propose a phenomenological model for
Fi(® which can reproduce the general beha-
vior described earlier,

F‘lct) =g~ 2

:, (cosh Q,t+sinh2,t/22,7,)
&)
where
2.2=1/47,~w,% 1)
The corresponding f,(w) is then given by
f(w)=2oe1p-"-

%/,

(W=D +(0/7,)?
=M p G, ) (32)

where the second equality holds from Eq.
(17). We note that the Fi(¥) in Eq. (30) can
satisfy Eq. (26), when M,=2m,.
fact that the measured moment of inertia is

From the

very close to 86%m,/3 for methane, we have
M,=4m, We will discuss the implication of
this discrepancy later in Sec. 5.

The maximum of the f,(0) in Eq. (32)
occurs at o, and its gneral features are
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very similar to the f,(¢) derived from solid
and liquid methane measurements. (See Fig.
2.) In Eq. (381) 2, should not be less than
zero in order to avoid negative values of
oscillations of Fi(¢). This requires

(33
From the /I\(a)) derived for the freely rotating
sphelrical molecule?®. it can be easily shown
that the maximum of the corresponding f, ()

20,7,=1.

oceurs at w=2/v'I, The maximum allowable

“a Q= 90dsy
=3
[
g .
.
3 TeNL
s . ..
s “
%2 . LR .
~ "‘. . LY
4 e
LA LA
. .
3 e
, by 0...
| .
. .'
. .
.
| i 1 | !
P 200 200 1000 1200

TIME OF FLIGHT (usec m')

7, in Eq. (30) is 1/20,, when 2,=0 corres-
ponding to the fastest decaying Fi(¥) with a
given o, in which case Fi(#) becomes e™'r,
(1-+¢/27,). This function decays faster as =,
becomes smaller. It is, thus found that in
order to fit the Fi(#) derived from the obser-
ved infrared spectrum, there should be an
upper limit for r,. This means a low limit
for w,. and we find that to reproduce the
observed Fi(¢) the low limit of o, is 2/vgl
which complies with Eq. (33). Moreover, the
observed f,(w) shows a maximum near w=2/
v/gI (See Fig. 1.). Therefore, we will choose

0,=2/vgl, (34)
For the value of 7, we can use the =0 limit
of T (w) combined with Egs. (23), (32), and
(34), the result being

o=EL[{ rwat] =025 @9
Which is also found to give the best fit to the
observed Fi(¥). In Eq. (35) we use the @
obtained by Gordon, assuming an expoential

extrapolation for long times beyond the data
points.

4. Numerical Results in Comparison with
Experiments

In this section we will compute the double
differential scattering cross section of liquid
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Fig. 5. Same as in Fig. 4, except that mea-
sured cross section is normalized to
the result of the present calculations.

methane at 98K, and the results will be com-
pared with the thermal neutron data of Harker
and Brugger'® and with the cold neutron
measurements of Venkataraman! and of
Dasannacharya and Venkataraman'®. The
double differential cross section in Eq. (11) is
computed using Eq. (6) with D'(x, ) in Eq.
(19) where D/(x,0) is given by Eq. (14)
and D,’(x,0) by Eq. (32).

In Fig. 1 the rotational correlation function
Fi(®) used in our calculation is shown in
comparison with the results of Gordon*. We
have computed the frequency distribution
function for our model which consists of Eqs.
(16) and (32) and compared in Fig. 2 with
the results of Agrawal and Yip who used the
F,(®) from Gordon and those of Harker
and Brugger?” as obtained from their solid
methane measurements at 22. 1°K. Our results
are in absolute scales and the others are
normalized to an area of 5. Notice that the
f(0) values in our results and those of Agra-
wal and Yip are matched. Since the transla-
tional contribution is the same in both cases,
this matching means that the results of Agra-
wal and Yip are also in absolute scales. We
note that the area of our results is 9, which

J. Korean Nuclear Society, Vol. 5, No. 4 December 1973

can be seen from the normalization condition
in Eq. (32), the .ratio of the translational
contribution to the rotational one being 8 with
M,.=2m,. Our model overestimates f(w) at
high frequencies, which is expected from the
comparison of F;(¢) at short times as shown
in Fig. 1.

The principal value integral in Eq. (6) can
be carried out analytically as

P5 “do' D'(x,0")
;e T

@ i — @t =““(w2—w¢2+1/1,2)

((o*—0 )2 +(o/. )21/ M
—b%0, (w00, (0*—0,)*+(0/7,)]"Y/3.
In the previous calculations of S(#,0) for
liquid argon, we have introduced a waveleng-
th-dependent w, into the D,/ (x,w) of Eq.
(14). This is not possible in the present

work, because we do not know the pair dis-
ribution function and the intermolecular po-
tential for methane. In the case of using a
wavelength-independent w:, however, we can
make 7, be wavelength-dependent by inter-
polating limiting values of the relaxation time.
The #=0 limit of 7z, is given by Eq. (15). At
the opposite limit of short wavelengths one
knows that the self correlation function decay

expl{—w?/(sv0)%], where vo=(2/pM)12
like is the thermal speed of the particles. Thus
qualitatively we expect 7,(x) to behave like
(kv0)7! at large #. Aside from the limiting
behavior, not much is known about z,(s).
When we use a simple interpolation scheme
for 7,(x) given by

7.(8) " 1=1,(0)" +x0y (36)
it is found that the theoretical scattering
intensities around quasi-elastic peaks show a
better agreement with the data.

For the rotational damping function we use
b=1.0929A, the experimental interatomic bond
distance?, D,’(x,w) given by Eq. (32) with
o, in Eq. (34) and 7, in Eq. (35), and any
wavelength dependence cannot be introduced,
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TIME OF FLIGHT, .acsec/m
because of the lack of information available
for any parameter in D,’(x, ).

In Fig. 3 we show the comparison of abso-
lute scattering intensities with the thermal
neutron experiments at fixed incident neutron
wavelength 2; and scattering angle 6. The
cross sections are given in wavelength length,
the conversion from the frequency scale being

2 2 2
d?:gx - rf:z?s 7?}2;3" S
where m, is the neutron mass and A,=2xn/x,
is the scattered neutron wavelength. The
theoretical results include the broadening due

to incident neutrop spectrum, which is assu-
med to be a normal distribution.

The comparison of our results with the cold
neutron is shown in Fig. 3 and 4. The data
were reported in the form of time-of-flight
distributions, the conversion being

5~ © =80 deg
4
s
oo 4,
g . . . . ...
g .
z
22— .
g .
&
%
RN
|
00 400 200 1000 1200
TIME OF FLIGHT, wmsec/m
da  _ m, d% (38)
dQdr hr® dfde

where 7y is the time-of-flight of scattered
neutrons. The average incident ncutron energy
is taken to be 4.87 meV and the theorctical
results are averaged over the incident neutron
spectrum. In Fig. 3 the comparison is shown
while in Fig. 4 the
observed intensiti~s are normalized to the area
of theoretical results, because in the latter

in the absolute scale,

case only relative measurements were carried
out.

The theoretical intensities of Fig. 3 are
obtained by making M,=4m,, or equivalent-
ly, deviding the D, (s,w) in Eq. (32) by
a factor of 2, while for the time-of-flight
spectra we used Eq. (32). This difficulty can
be explained by examining the comparison
of f(w) in Fig. 2. Our model f(w) covering
the frequency range of the cold neutron data
is in good agreement with the f(w) obtained
from the obscrved Fi(f), but it deviates con-
siderably from the latter at the higher frequ-
ency region of the thermal neutron data. By
making M,=4mp we force the higher fre-
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quency portion of our f(w) to bec in better
agreement with the observed f(w). In this
regard we feel that if we use the measured
F(?) instead of the present model, though we
have to evaluate the principal value integral
numerically, the theoretical intensities will be
in better agreement than shown here.

In all the theoretical results we do not in-
clude instrumental resolution and multiple scat-
tering contaminations. The latter is expected
to appreciably in inelastic scattering region at
the smaller scattering angles.

5. Discussions

In this work we have attempted to extend to
extend the time correlation function formalism
of Martin and Kadanoff, which was success-
fully applied to the analysis of correlation func-
tions in a simple liquid, to the evaluation of
the self correlation fanction of a molecular
liquid. The method used in the presseat work is
basically the same as for a simple liquid in that
the most important part of the procedure is
to determine a damping function which satisfies
sum rules and hydrodynamic limits. Though
the method can be, in principle, useful in
evaluating other correlation functions by de-
termining their corresponding damping func-
tions, in the present work the damping func-
tion for the incoherent scattering function has
been related to the generalized frequency dis-
tribution function. This damping function is
in general dependent on both frequency and
wavelength, and can be exactly related to
the frequency distribution function only at
the £=0 limit,
method to introduce wavelength dependence

Since we do not know any

into the damping function associated with
rotational motions of a molecule, we have
assumed that there is no wavelength depen-
dence. However, we have found that a wave-
length-dependent relaxation time interpolated
between the £=0 limit and large & behavior in

the damping function of translational motions
gives better results. From the rather satisfac-
tory comparison of our theoretical absolute
intensities with the thermal and cold neutron
scattering measurements, we conclude that our
direct method of calculating the incoherent
scattering function is as useful as the indirect
method in which the intermediate scattering
function is first evaluated.

We have introduced the assumptions of the
incoherent approximation, the neglect of
translation-rotation coupling effects, and the
classical calculation which were discussed in
detail by Agrawal and Yip, and hence we
will not discuss them here any further. The
other assumption that the rotational contribu-
tion of damping function is determined solely
by the dipole correlation function Fi(¢) is the
direct result of the Gaussian approximation
of the intermediate scattering function. Our
procedure does not involve the evaluation of
the intermediate scattering function, though
we have used the f,(w) based on this assump-
tion. We have also made the assumption
about the relation between the damping
function and the rotational freqency distribu-
tion function. Therefore, we cannot make any
conclusion on non-Gaussians correction as done
by Agrawal and Yip®. In this regard we
note that the works of Sears'® and Rao et
al®, which utilized higher order rotational
correlation functions gave the results similar
to those of Agrawal Yip in which F(2) was
mainly responsible for the scattering intensi-
ties. For the rotational frequency distribution
function we have used a model for the
dipole correlation function which reproduces
the general behavior of the Fi(¢) obtained by
Gordon from the observed infrared absorption

line data. Our model F(¢) contains the
rexation time and a characteristic frequency
of rotational motions which are determined
by considering the known quantities such as
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the position of the maxima of the observed
f(w) and the f,(w) for a freely rotating
spherical molecule, and the s=0 limit of
the observed infrared absorption spectrum.
This Fi(¢) gives the correct behavior at
long times, but reduces to 1-(4/8D¢% in
contrast to the free-rotation limit of 1-(1/
8D¢? at short times. This discrepancy shown
in the comprison of Fi(¢) at short times is
also seen in the comparison of the frequency
distribution function, especially in the high
frequency region. We feel that this difficulty
is not very serious in two regards. First, the
comparison of f(w) is meaningful only at the
#=0 limit, because at finite wavelenghs our
model includes a wavelength dependence.
Secondly, by forcing the effective roational
mass in our model to be 4m,, as done for the
comparison of the thermal neutron scattering
intensities, we can have better agreement of
f(o) at higher frequencies. This broblem can
be avoided by using the f,(w) obtained from
the measured Fi(¢). The roason we used a
model for Fy(#) is mainly to see whether a
direct evaluation of the scattering function
for a molecular liquid is feasible with a simple
model for the damping function. It would be
interesting to recalculate the scattering inten-
sities using the rotational damping function
obtained from the observed Fi(®).

By considering the relative contributions of
the translational and rotational damping fun-
ction s in our model, we expect that the
contribution to the scattering intensities will
be dominated by the rotational motions. It is,
however, found that cross sections near qua-
sielstic peaks are very sensitive to the trans-
lational damping function. This may be expe-
cted from the fact that at the w=o0 limit the
rotational damping function does not contri-

bute at all to the total damping function.
This sensitivity is shown in the comparison
of the cold neutron data at the scattering

angle 6§=90°, where we had better agreement
using the 7,(0) half of the value obtained
from the observed self-diffusion coefficient.
This means that we used a self-diffusion
coefficient larger by a factor of 2 compared
to the obsered value. However, we note
that we used a wavelength-dependemt rela-
xation time r,(x). Therefore, this comparison
should be interpreted as that considerable
wavelengh dependence is to be brought into
the relaxation time in a single relaxation time
approximation for the correlation function.
This point was also raised in the analysis of
correlation function in a simple liquid® ©. The
reason that we did not make the rotational
relaxation time be wavelength-dependent is
simply because we do not have any informa-
tion about its wavclength dependence.

It is interesting to note that our damping
function approach to the direct evaluation
method makes use of the information contai-
ned in the generalized frequency distribution
function which plays a key role in the indi-
rect method using the intermediate scattering
function. We feel that in order to give a
better insight into the molecular motions our
method reqires a better knowledge of spatial
correlations contained in the quanties such as
frequency moments of the scattering function,
while the indirect method will need a better
description for determining time correlations
included in the quantities such as width func-
tions of the intermediate function. This con-
trast may be one of inherent difficulties in
each method.

By making a simple assumption about the
frequency dependence of the rotational dam-
ping function using the relation between the
frequency distribution function and the dam-
ping function, and a simple interpolation pre-
scription for the wavelength-dependent relaxa-

tion times 7,(x), we have been able to obtain
the absolute neutron scattering intensities for
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liquid methane. The results are at least in
semiquantitative agreement with experiments.
It would be interesting to see if the present
approach can be extended to estimating the
coherent scattering function in a moleular
liquid arising from molecular motions of dif-
ferent molecules. It would be also useful for
the analysis of recent computer studies of
molecular dynamics in molecular liquids®®.
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