• Title/Summary/Keyword: Digital calibration

Search Result 379, Processing Time 0.029 seconds

Implementation of TDD LTE-Advanced Testbed adopted Dynamic Pre-coding for MU-MIMO (MU-MIMO를 위한 동적 Pre-coding을 적용한 TDD LTE-Advanced 테스트베드의 구현)

  • Han, Sangwook;Lee, Jeonghyeok;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.27-37
    • /
    • 2022
  • In this paper, we presents a Multiple User Multiple Input Multiple Output (MU-MIMO) test-bed system for Time Division Duplex (TDD) Long Term Evolution-Advanced (LTE-A). Using two parameters, the condition number of the channel matrix and the path gain, the MU-MIMO system could switch pre-coder to maintain target Bit Error Rate (BER) level. This paper also introduces a calibration procedure for compensating error of Radio Frequency (RF) paths of the antennas and RF transceivers. From experimental measurements, dynamic pre-coding scheme could maintain target BER, set to 10-3, with the pre-coder set configured with Zero Forcing (ZF), Tomlinson Harashima Pre-coding (THP), Lattice Reduction (LR). The simplest pre-coder ZF is adopted in stable channel, and when path gain become less than 0.25, LR is adopted. Lastly, when condition number of channel matrix become larger than 7, THP is adopted.

ENOB 8-bit / 49.98dB-SNDR SAR ADC with Auto Zero Calibration Technique for Offset Improvement (Offset 개선을 위해 Auto Zero Calibration 기법을 적용한 8-bit / 49.98dB-SNDR SAR ADC 설계)

  • Chae Eun Jung;Juwon Oh;Young-Gun Pu;Kang-Yoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.13-18
    • /
    • 2024
  • This paper proposes a circuit utilizing auto zero technology to minimize offset and enhance accuracy in the reference generator and comparator. As evidence, a comparison between pre and post auto zero usage revealed a reduction of approximately 90% in standard deviation. The proposed circuit was implemented using a 55nm CMOS process, with an input frequency of 781.2 Hz. It achieves an Effective Number of Bits (ENOB) of 8.01 bits and a Signal-to-Noise Distortion Ratio (SNDR) of 49.98 dB.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 유원재;김도훈;안재웅;강영준;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Moire topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using digital projection moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2$\pi$-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the flour-three step algorithm method than the same step in the phase shifting of different pitchs.

  • PDF

360° Projection Image Analysis Method for the Calibration (보정을 위한 고해상도 360° 프로젝션 영상 분석 방법)

  • Han, Jung-Soo;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.203-208
    • /
    • 2015
  • Image degradation will occur depending on hardware characteristics according to the lapse of time between beam projectors when multivision system is installed in the Theme park/Exhibition/Science Museum. In this paper, we have researched the 10-bit High-depth and high-resolution $360^{\circ}$ projection image analysis technique to solve the problems of quality and the maintenance of the theater. The goal is to minimize the economic losses and the development of special theater calibration system that can efficiently support a quality of an image. We proposed the method of image analysis technology, and explained the detailed functions and evaluation methods for image analysis technique. Evaluation method included the performance items, and proposed reasonable value to the experimental method and the goal value.

A 1.88-mW/Gb/s 5-Gb/s Transmitter with Digital Impedance Calibration and Equalizer (디지털 임피던스 보정과 이퀄라이저를 가진 1.88mW/Gb/s 5Gb/s 송신단)

  • Kim, Ho-Seong;Beak, Seung-Wuk;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • This paper describes 1.2-V 5-Gb/s scalable low voltage signaling(SLVS) differential transmitter(TX) with a digital impedance calibration and equalizer. The proposed transmitter consists of a phase-locked loop(PLL) with 4-phase output clock, a 4-to-1 serializer, a regulator, an output driver, and an equalizer driver for improvement of the signal integrity. A pseudo random bit sequence generator is implemented for a built-in self-test. The proposed SLVS transmitter provides the output differential swing level from 80mV to 500mV. The proposed SLVS transmitter is implemented by using a 65-nm CMOS with a 1.2-V supply. The measured peak-to-peak time jitter of the implemented SLVS TX is about 46.67 ps at the data rate of 5Gb/s. Its power consumption is 1.88 mW/Gb/s.

Evaluation of DSM Accuracy Based on UAS with Respect to Camera Calibration Methods and Application of Interior Orientation Parameters (카메라 검정 방법과 내부표정 요소 적용에 따른 UAS 기반의 DSM 정확도 평가)

  • Yu, Jae Jin;Son, Seung-Woo;Park, Hyun-Su;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.787-798
    • /
    • 2017
  • In the present study, the interior orientation parameters were computed by using various kinds of methods. Five DSMs (Digital Surface Models) in total were produced by applying interior orientation parameters to the image processing, and the accuracy was evaluated. In order to use interior orientation parameters as independent variables of DSM accuracy, flight parameters and exterior orientation parameters that can affect the accuracy of DSM were set to be the only fixed variables. From the results of the present study, the RMSE of campaign 3-2 was found to be 0.0305 m, which was the most favorable result. Thus, it is advisable to produce DSM by adjusted interior parameters after figuring out the interior orientation parameters using a camera calibration program at laboratory environment.

Capacitive Readout Circuit for Tri-axes Microaccelerometer with Sub-fF Offset Calibration

  • Ouh, Hyun Kyu;Choi, Jungryoul;Lee, Jungwoo;Han, Sangyun;Kim, Sungwook;Seo, Jindeok;Lim, Kyomuk;Seok, Changho;Lim, Seunghyun;Kim, Hyunho;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • This paper presents a capacitive readout circuit for tri-axes microaccelerometer with sub-fF offset calibration capability. A charge sensitive amplifier (CSA) with correlated double sampling (CDS) and digital to equivalent capacitance converter (DECC) is proposed. The DECC is implemented using 10-bit DAC, charge transfer switches, and a charge-storing capacitor. The DECC circuit can realize the equivalent capacitance of sub-fF range with a smaller area and higher accuracy than previous offset cancelling circuit using series-connected capacitor arrays. The readout circuit and MEMS sensing element are integrated in a single package. The supply voltage and the current consumption of analog blocks are 3.3 V and $230{\mu}A$, respectively. The sensitivities of tri-axes are measured to be 3.87 mg/LSB, 3.87 mg/LSB and 3.90 mg/LSB, respectively. The offset calibration which is controlled by 10-bit DECC has a resolution of 12.4 LSB per step with high linearity. The noise levels of tri-axes are $349{\mu}g$/${\sqrt}$Hz, $341{\mu}g$/${\sqrt}$Hz and $411{\mu}g$/${\sqrt}$Hz, respectively.

A Study on Production and Its Usefulness of AAPM TG18 Guiding Instrument for Diagnostic Monitor QC (영상의학 검사 판독용 모니터 정도관리 Guiding Instrument 제작과 유용성 고찰)

  • Son, Gi-Gyeong;Sung, Dong-Wook;Jeong, Jae-Ho;Kang, Hui-Doo;Ryu, Kyung-Nam
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Diagnostic display monitor QA according to AAPM TG18 is usually performed by PACS administrator, product manager and reading doctor, and for acceptance testing and periodic quality control evaluation, a combination of visual and quantitative tests can be used, as outlined in sections 5 and 6 of 'assessment of display performance for medical imaging systems'. Although many display tests can be performed visually, a more objective and quantitative evaluation of display performance requires special test tools. The required instruments vary in their complexity and cost, depending on the context of the evaluation(research, acceptance testing, or quality control) and how thorough the evaluation needs to be. Objective and reliable assessment of many display characteristics can be performed with relatively inexpensive equipment, So, we made 'AAPM TG18 guiding instrument' to ues variable purpose of the evaluation of 'geometrical distortions(quantitative"', 'veiling glare(visual)' and 'sensor calibration'. The spatial measurements for the quantitative evaluation of geometric distortions, and the measurement of the veling-glare ring response function which provides information regarding the spatial extent of the luminance spread, can be performed using the TG18 guiding instrument can be used to sensor calibration to standardize the basic rate of 0% luminance when periodic calibration.

  • PDF

Calibration of Fisheye Lens Images Using a Spiral Pattern and Compensation for Geometric Distortion (나선형 패턴을 사용한 어안렌즈 영상 교정 및 기하학적 왜곡 보정)

  • Kim, Seon-Yung;Yoon, In-Hye;Kim, Dong-Gyun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we present spiral pattern which suits for optical simulator to calibrate fisheye lens and compensate geometric distortion. Using spiral pattern, we present calibration without mathematical modeling in advance. Proposed spiral pattern used to input image of optical simulator. Using fisheye lens image, we calibrate a fisheye lens by matching geometrically moved dots to corresponding original dots which leads not to need mathematical modeling. Proposed algorithm calibrates using dot matching which matches spiral pattern image dot to distorted image dot. And this algorithm does not need modeling in advance so it is effective. Proposed algorithm is enabled at processing of pattern recognition which has to get the exact information using fisheye lens for digital zooming. And this makes possible at compensation of geometric distortion and calibration of fisheye lens image applying in various image processing.

Evaluation of Applicability of SWAT-CUP Program for Hydrologic Parameter Calibration in Hardware Watershed (Hardware 유역의 수문매개변수 보정을 위한 SWAT-CUP 프로그램의 적용성 평가)

  • Sang Min, Kim
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.63-70
    • /
    • 2017
  • The purpose of this study was to calibrate the hydrologic parameters of SWAT model and analyze the daily runoff for the study watershed using SWAT-CUP. The Hardware watershed is located in Virginia, USA. The watershed area is $356.15km^2$, and the land use accounts for 73.4 % of forest and 23.2 % of pasture. Input data for the SWAT model were obtained from the digital elevation map, landuse map, soil map and others. Water flow data from 1990 to 1994 was used for calibration and from 1997 to 2005 was for validation. The SUFI-2 module of the SWAT-CUP program was used to calibrate the hydrologic parameters. The parameters were calibrated for the highly sensitive parameters presented in previous studies. The P-factor, R-factor, $R^2$, Nash-Sutcliffe efficiency (NS), and average flow were used for the goodness-of-fit measures. The applicability of the model was evaluated by sequentially increasing the number of applied parameters from 4 to 11. In this study, 10-parameter set was accepted for calibration in consideration of goodness-of-fit measures. For the calibration period, P-factor was 0.85, R-factor was 1.76, $R^2$ was 0.51 and NS was 0.49. The model was validated using the adjusted ranges of selected parameters. For the validation period, P-factor was 0.78, R-factor was 1.60, $R^2$ was 0.60 and NS was 0.57.