DOI QR코드

DOI QR Code

Evaluation of DSM Accuracy Based on UAS with Respect to Camera Calibration Methods and Application of Interior Orientation Parameters

카메라 검정 방법과 내부표정 요소 적용에 따른 UAS 기반의 DSM 정확도 평가

  • Yu, Jae Jin (Korea Environmental Information Center, Korea Environment Institute) ;
  • Son, Seung-Woo (Korea Environmental Information Center, Korea Environment Institute) ;
  • Park, Hyun-Su (Department of Geography, Kongju National University) ;
  • Jeon, Hyung-Jin (Korea Environmental Information Center, Korea Environment Institute) ;
  • Yoon, Jeong-Ho (Korea Environmental Information Center, Korea Environment Institute)
  • 유재진 (한국환경정책.평가연구원 국토환경정보센터) ;
  • 손승우 (한국환경정책.평가연구원 국토환경정보센터) ;
  • 박현수 (공주대학교 지리학과) ;
  • 전형진 (한국환경정책.평가연구원 국토환경정보센터) ;
  • 윤정호 (한국환경정책.평가연구원 국토환경정보센터)
  • Received : 2017.07.31
  • Accepted : 2017.09.25
  • Published : 2017.10.30

Abstract

In the present study, the interior orientation parameters were computed by using various kinds of methods. Five DSMs (Digital Surface Models) in total were produced by applying interior orientation parameters to the image processing, and the accuracy was evaluated. In order to use interior orientation parameters as independent variables of DSM accuracy, flight parameters and exterior orientation parameters that can affect the accuracy of DSM were set to be the only fixed variables. From the results of the present study, the RMSE of campaign 3-2 was found to be 0.0305 m, which was the most favorable result. Thus, it is advisable to produce DSM by adjusted interior parameters after figuring out the interior orientation parameters using a camera calibration program at laboratory environment.

본 연구에서는 각기 다른 방법으로 내부표정 요소를 산출하였다. 내부표정 요소를 영상처리 과정에 적용하여 총 5개의 DSM(Digital Surface Models)을 제작한 뒤 정확도를 평가하였다. 내부표정 요소를 DSM 정확도의 독립변수로 활용하기 위해 DSM의 정확도에 영향을 줄 수 있는 비행요소와 외부표정 요소를 단일 고정변수로 설정하였다. 연구결과, campaign 3-2의 RMSE가 0.0305 m로 가장 양호한 결과를 보였다. 따라서 실험실 환경에서 카메라 검정 시스템을 이용하여 내부표정 요소를 확인한 뒤, 최적화를 통해 획득한 수정된 내부표정 요소를 이용해 DSM을 제작하는 것이 가장 정확도가 높은 DSM을 구축하는 방법으로 판단된다.

Keywords

References

  1. Nishar, A., S. Richards, D. Breen, J. Robertson, and B. Breen, 2016. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei - Tauhara geothermal field, Taupo, New Zealand, Renewable Energy, 86: 1256-1264. https://doi.org/10.1016/j.renene.2015.09.042
  2. Ruzgiene, B., T. Berteska, S. Gecyte, E. Jakubauskiene, and V. C. Aksamitauskas, 2015. The surface modelling based on UAV Photogrammetry and qualitative estimation, Measurement, 73: 619-627. https://doi.org/10.1016/j.measurement.2015.04.018
  3. Cucci, D. A., M. Rehak, and J. Skaloud, 2017. Bundle adjustment with raw inertial observations in UAV applications, Journal of Photogrammetry and Remote Sensing, 130: 1-12. https://doi.org/10.1016/j.isprsjprs.2017.05.008
  4. Brown, D. C., 1971. Close-Range Camera Calibration, Photogrammetric Engineering, 37(8): 855-866.
  5. Brown, D. C., 1976. The bundle Adjustment-Progress and Prospects, InternationalArchives of Photogrammetry, 21(3): 303-333.
  6. Aguera-Vega, F., F. Carvajal-Ramirez, and P. Martinez-Carricondo, 2017. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle, Measurement, 98: 221-227. https://doi.org/10.1016/j.measurement.2016.12.002
  7. Mesas-Carrascosa, F. J., M. D. Notario-Garcia, J. E. Merono de Larriva, and A. Garcia-Ferrer, 2016. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas, Sensors, 16(11): 1838. https://doi.org/10.3390/s16111838
  8. Caroti, G., I. M. E. Zaragoza, and A. Piemonte, 2015. Accuracy Assessment in Structure from Motion 3D Reconstruction from UAV-born Images: The Influence of the Data Processing Methods, Proc. of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Toronto, CA, Aug. 30-Sep. 2, vol XL-1/W4, pp. 103-109.
  9. Grun. A., 1978. Progress in photogrammetric point determination by compensation of systematic errors and detection of gross errors, Nachrichten aus dem Karten- and Vermessungswesen, Reihe II(36): 113-140.
  10. Han, S.-H., J.-H. Park, and W.-H. Lee, 2016. On-Site vs. Laboratorial Implementation of Camera Self-Calibration for UAV Photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(4): 349-356. https://doi.org/10.7848/ksgpc.2016.34.4.349
  11. Turner, I. L., M. D. Harley, and C. D. Drummond, 2016. UAVs for coastal surveying, Coastal Engineering, 114: 19-24(short communication). https://doi.org/10.1016/j.coastaleng.2016.03.011
  12. Luna, I. and A. Lobo, 2016. Mapping Crop Planting Quality in Sugarcane from UAV Imagery: A Pilot Study in Nicaragua, Remote Sensing, 8(6): 500. https://doi.org/10.3390/rs8060500
  13. Jeong, S., 2011. Evaluation of Long-term Stability of Interior Orientation Parameters of a Non-metric Camera, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 29(3): 283-291 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2011.29.3.283
  14. Kang, J.-A., J.-M. Park, and B.-G. Kim, 2008. The Research for the Wide-Angle Lens Distortion Correction by Photogrammetry Techniques, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 26(2), 103-110 (in Korean with English abstract).
  15. Kim, B.-J., Y.-K. Lee, and J.-K. Choi, 2015. Investigating Applicability of Unmanned Aerial Vehicle to the Tidal Flat Zone, Korean Journal of Remote Sensing, 31(5): 461-471. (in Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.5.10
  16. Peter, K. D., S. d'Oleire-Oltmanns, J. B. Ries, I. Marzolff, and A. A. Hssaine, 2014. Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analysed by rainfall simulation and UAV remote sensing data, Catena, 113: 24-40. https://doi.org/10.1016/j.catena.2013.09.004
  17. Lee, C.-N. and J.-H. Oh, 2012. A Study on Efficient Self-Calibration of a Non-Metric Camera for Closerange Photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 30(6): 511-518 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2012.30.6-1.511
  18. Lee, G.-S., Y.-W. Choi, K.-S. Jung, and G.-S. Cho, 2015. Analysis of the Spatial Information Accuracy According to Photographing Direction of Fixed Wing UAV, Journal of the Korean Cadastre Information Associstion, 17(3): 141-149 (in Korean with English abstract).
  19. James, M. R., S. Robson, S. d'Oleire-Oltmanns, and U. Niethammer, 2017. Optimising UAV topographic surveys processed with structurefrom-motion: Ground control quality, quantity and bundle adjustment, Geomorphology, 280: 51-66. https://doi.org/10.1016/j.geomorph.2016.11.021
  20. Uysal, M., A. S. Toprak, and N. Polat, 2015. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill, Measurement, 73: 539-543. https://doi.org/10.1016/j.measurement.2015.06.010
  21. Shahbazi, M., G. Sohn, J. Theau, and P. Menard, 2015. Development and Evaluation of a UAV-Photo -grammetry System for Precise 3D Environmental Modeling, Sensors, 15(11): 27493-27524. https://doi.org/10.3390/s151127493
  22. Oh, J.-H., C.-N. Lee, and Y.-D. Eo, 2006. A Photo -grammetric Network and Object Field Design for Efficient Self-Calibration of Non-metric Digital Cameras, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 24(3): 281-288 (in Korean with English abstract).
  23. Gini, R., D. Passoni, L. Pinto, and G. Sona, 2012. Aerial images from a UAV system: 3D modelling and tree species classification in a park area, International Archives of the Photogrammetry, Proc. of Remote Sensing and Spatial Information Sciences, Melbourne, AUS, Aug. 25-Sep. 1, vol XXXIXB1, pp. 361-366.
  24. Siebert. S. and J. Teizer, 2014. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system, Automation in Construction, 41: 1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  25. Vollgger, S. A. and A. R. Cruden, 2016. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia, Journal of Structure Geology, 85: 168-187. https://doi.org/10.1016/j.jsg.2016.02.012
  26. Tonkin, T. N., N. G. Midgley, D. J. Grahamb, and J. C. Labadz, 2014. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales, Geomorphology, 226: 35-43. https://doi.org/10.1016/j.geomorph.2014.07.021
  27. Udin, W. S. and A. Ahmad, 2014. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle, IOP Conf. Series: Earth and Environmental Science, 18: 12-27.
  28. Won, J.-H., J.-K. So, and H.-C. Yun, 2012. Non-Metric Digital Camera Lens Calibration Using Ground Control Points, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 30(2): 173-180 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2012.30.2.173
  29. Yoo, Y.-H., J.-W. Choi, S.-K. Choi, and S.-H. Jung, 2016. Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs, Journal of the Korean Society for Geo-spatial Information Science, 24(3): 3-9 (in Korean with English abstract). https://doi.org/10.7319/kogsis.2016.24.3.003
  30. Yu, J.-J., H.-S. Park, Y.-J. Yang, and D.-H. JANG, 2016. Assessing the Applicability of UAS for Detecting Geomorphological Changes in Coastal Areas: A Case Study in the Baramarae Beach in Anmyeon-do, Journal of the Korean Geomorphological Association, 23(4): 113-126 (in Korean with English abstract). https://doi.org/10.16968/JKGA.23.4.113

Cited by

  1. Optimal flight parameters for unmanned aerial vehicles collecting spatial information for estimating large-scale waste generation vol.40, pp.20, 2017, https://doi.org/10.1080/01431161.2019.1608387