• Title/Summary/Keyword: Differential-transformation

Search Result 283, Processing Time 0.023 seconds

Study on Polymorphism of Cimetidine (시메티딘의 다형에 관한 연구)

  • Sohn, Young-Taek;Kim, Ki-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.2
    • /
    • pp.81-87
    • /
    • 1993
  • Five crystalline forms of cimetidine, four anhydrous and a monohydrate, have been prepared, and their thermal behavriours have been studied by differential thermal analysis and thermo-gravimetry. The dissolution rates of the five forms were determined in distilled water at $37^{\circ}C$. The results showed a significant difference in the dissolution rate. Polymorphic transformation occurred spontaneously during storage at room condition and was accelerated by applied energy during formulation process-milling.

  • PDF

IDENTITIES ABOUT LEVEL 2 EISENSTEIN SERIES

  • Xu, Ce
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.63-81
    • /
    • 2020
  • In this paper we consider certain classes of generalized level 2 Eisenstein series by simple differential calculations of trigonometric functions. In particular, we give four new transformation formulas for some level 2 Eisenstein series. We can find that these level 2 Eisenstein series are reducible to infinite series involving hyperbolic functions. Moreover, some interesting new examples are given.

CENTROAFFINE GEOMETRY OF RULED SURFACES AND CENTERED CYCLIC SURFACES IN ℝ4

  • Yang, Yun;Yu, Yanhua
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.987-1004
    • /
    • 2018
  • In this paper, we get several centroaffine invariant properties for a ruled surface in ${\mathbb{R}}^4$ with centroaffine theories of codimension two. Then by solving certain partial differential equations and studying a centroaffine surface with some centroaffine invariant properties in ${\mathbb{R}}^4$, we obtain such a surface is centroaffinely equivalent to a ruled surface or one of the flat centered cyclic surfaces. Furthermore, some centroaffine invariant properties for centered cyclic surfaces are considered.

A method of formulating the equations of motion of multibody systems (다몸체 시스템의 운동방정식 형성방법)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.926-930
    • /
    • 1993
  • An efficient method of formulating the equations of motion of multibody systems is presented. The equations of motion for each body are formulated by using Newton-Eulerian approach in their generic form. And then a transformation matrix which relates the global coordinates and relative coordinates is introduced to rewrite the equations of motion in terms of relative coordinates. When appropriate set of kinematic constraints equations in terms of relative coordinates is provided, the resulting differential and algebraic equations are obtained in a suitable form for computer implementation. The system geometry or topology is effectively described by using the path matrix and reference body operator.

  • PDF

On the Linear Quadratic Regulator for Descriptor Systems

  • Katayama, Tohru;Minamino, Katsuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.219-224
    • /
    • 1992
  • This paper deals with the linear quadratic optimal regulator problem for descriptor systems without performing a preliminary transformation for a descriptor system. We derive a generalized Riccati differential equation (GRDE) based on the two-point boundary value problem for a Hamiltonian equation. We then obtain an optimal feedback control and the optimal cost in terms of the solution of GRE. A simple example is included.

  • PDF

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF

A DISCRETE FINITE ELEMENT GALERKIN METHOD FOR A UNIDIMENSIONAL SINGLE-PHASE STEFAN PROBLEM

  • Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.165-181
    • /
    • 2004
  • Based on Landau-type transformation, a Stefan problem with non-linear free boundary condition is transformed into a system consisting of parabolic equation and the ordinary differential equations. Semidiscrete approximations are constructed. Optimal orders of convergence of semidiscrete approximation in $L_2$, $H^1$ and $H^2$ normed spaces are derived.

GENERALIZATION OF EXTENDED APPELL'S AND LAURICELLA'S HYPERGEOMETRIC FUNCTIONS

  • Khan, N.U.;Ghayasuddin, M.
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.113-126
    • /
    • 2015
  • Recently, Liu and Wang generalized Appell's and Lauricella's hypergeometric functions. Motivated by the work of Liu and Wang, the main object of this paper is to present new generalizations of Appell's and Lauricella's hypergeometric functions. Some integral representations, transformation formulae, differential formulae and recurrence relations are obtained for these new generalized Appell's and Lauricella's functions.

SOME EXPLICIT SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Lee, Youho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.27-40
    • /
    • 2017
  • In this paper, we construct exact traveling wave solutions of various kind of partial differential equations arising in mathematical science by the system technique. Further, the $Painlev{\acute{e}}$ test is employed to investigate the integrability of the considered equations. In particular, we describe the behaviors of the obtained solutions under certain constraints.

A Study on Natural Convection from Two Cylinders in a Cavity

  • Mochimaru Yoshihiro;Bae Myung-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1773-1778
    • /
    • 2006
  • Steady-state natural convection heat transfer characteristics from cylinders in a multiply-connected bounded region are clarified. A spectral finite difference scheme (spectral decomposition of the system of partial differential equations, semi-implicit time integration) is applied in numerical analysis, with a boundary-fitted conformal coordinate system through a Jacobian elliptic function with a successive transformation to formulate a system of governing equations in terms of a stream function, vorticity and temperature. Multiplicity of the domain is expressed explicitly.