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Abstract

An efficient method of formulating the
equations of motion of multibody systems is
presented, The equations of motion for each body
are- formulated by using Newton-Eulerian approach
in their generic form. And then a transformation
matrix which relates the global coordinates and
relative coordinates is introduced to rewrite the
equations of motion in terms of relative
cooridnates. When appropriate set of Kinematic
constraints equations in terms of relative
:coordinates is provided, the resulting
differential and algebraic equations are obtained
in a suitable form for computer implementation.
The system geometry or topology is effectively
described by using the path matrix and reference
body operator.

Introduction

Not only a complex and large space system, but
also most earth-based mechanical systems in use
are essentially multibedy systems. Typical
multibody systems are shown in Fig. 1.
Obviously, the analysis of multibody systems will
be more complicated and costly than that of
comparatively simple systems such as single or
two body: systens, This area has seen steady and
undimishing progress because of a continuing
demand for the analysis of multibody systems and
the explosive growth of computing power.

One feature pertaining to multibody systems is
that certain elementary subsystem shapes are
repeated. This often allows automatic and
recuraive formulation of fairly general eguations
of motion for a broad class of multibody systems.
There are several ogeneral computer program
available which has the capability described in
the above [1-3].

Formulation of dynamical equations of motion

While Newton-Eulerian vectorial mechanics has
been successfully for decades used to obtain
equations of motion of a single or multibody
system{4-61, the Lagrangian approach bkait been’
favored by many who seek to use computer’aided
automatic generation of generic equations of
motion. In this context, the Lagrangian approach
includes: classical Lagrange’'s equations, the
principal of virtual work, Lagrange’s equations
in terms of quasi-coordinate, and Lagrange's form
of D'Alembert’s principle [7]. All of this
formalism are, of course, based on and derivable
from D'Alembert’s principle. Another variation
of D'Alembert’s principle is Kane's method [8].
Advantages of using Kane's method are that
non-working constraint forces and moments are
automatically eliminated and equations of motion
in terms of a minimal set of generalized speeds
are obtained. In the Newton-Eulerian approach,
the non-working constraint forces must be solved
for or eliminated. '

No matter what formalism is used, its final
outcome is equations of motion in the form of

Mx= flx, x ¢t (1)
where M is a generalized mass matrix, x is a
column matrix of generalized coordinates, and f
is a generalized force vector. More often Eq.
(1) should be augmented by a set of system
constraint equations

Ax = glxt) (2)
where A is a Jacobian constraint matrix and g
is a constraint vector. In most previous works,
attention has focused on how effectively
(analytical formulation) and how efficiently
(numerical implementation) one can get Eq. (1).

However, when the number of components of a
multibody system is large, the procedure for

solving Egs. (1) and (2) for x becomes
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prohibitedly time consuming. Therefore, an
efficient algorithm has heen sought gince early
1980°s. [9-14] Nikravesh, et al., used solely
Euler parameters to derive equations of motion of
constrained multibody systems and equatios of
Kinematic constraints for various joints[15].
Kim and Haug's formulation is considered to be
very d¢eneric and suitable for parallel or
concurrent processing, which may reduce computing
time drastically. A formulation of equations of
motion using velocity transformation was proposed

by Kim [16] and Keat [17]. In this paper, Kim's

method is further developed by introducing path
matrix and reference body matrix so that it may
be easily applicable to more complicated systenms
and suitable for general purpose multibody
computer simulation program.

Kinematics
Path matrix and reference body operator

Referring to the generic multibody system
shown in Fig. 1 an arbitrary body is chosen as a
base body and is numbered "1, If the systenm
containg any closed loop, then one of the joints
in each loop may be cut so that the entire system
consists of “chain” or “open” tree configurations
only. The inboard body of the body j is the one
leading to the base body and outboard body is the
one leading away from the base body. Note that
there is only one inboard body unless it has a
clogsed loop. An end body is one without any
outboard bodies. The component bodies may he
numbered in an arbitrary manner in the current
formulation,

Let's define the element of the path matrix
such that

{1, if body j is located between bodies I and i
g .
0, if not

For example, we may construct the follwoing path
matrix n for the multibody system shown in Fig.
2.

1000000
1100000
1010000
n=11101000
1100100
1010010
1010001

If the attitude of body j is defined with respect
to its inboard body i, we define an operator such
that

LY =i (3)
For the example shown in Fig.3 , we may readily
note that

L(2) = L(3) =1
L(4) = L(5) = 2
L) = L() =3

By definition, we let L(1) = 0. That is, the
reference body of the base body is the inertial
coordiante system. To illustrate the use of the
reference body operator L, we try to relate Qj

to @r()- Again referring to Fig. 2, we can set
e - 0, QL - 21,
QI3 - L1, QI « @D2,
Qies) = W2, Lree) = Q3,
Q- Q3.

In matrix form, we may write

Ly v 00 0 0 0 0 O @y
L@ 10 00000 a2
@yl 100 00 0 0 a3
Yusf 1 001 0 0 O 0 O L4
4sit 01 0 0 0 0 0 ds
el 00 1 0 0 0 O i
Mt 0o0 1 00 0 O 27

For simplicity, we write
QL = pQ (4)

where each element of the matrix p represents
the 3x3 null or identity matrix.
Velocity transformation

Referring to Fig. 3, one nay write the
absolute position vector of P;, the attachment
point of body j to its inboard body, as

B = Zaade. £, j=12..n (5)

where the use of notations dy and rx may be
clear upon examining Fig. 4. By definition, we
let d; = Q. The total time derivative of Eq.
(5) expressed in the inertial coordinate system
is

B o= Y (6)

= kﬁ':lnjk Cow™ e+ mreox( de+ )]

where Cpx denote a direction cosine matrix
which vector in the inegtial
coordinate system into a vector in~ the L(K)*
body-fixed coordinate system. We may rewite Eq.
(6) using matrix notation as follows:
R = xlny CopTlr + alng Crp™C i+ 1)) wr
(7)

transforms a

. . . N
where ¥ = ( ", &', i)', and
T T T
ar- ( aww’, 2o’ 20"’ The
various path
[ry Con™C di+ 1]
topology of the system of interest. Tilde
denotes the skew symmetric matrix of a vector.
Uging similar procedure, we write the absolute
angular velocity of the body j as

n; = tﬂl‘ijk Q5 (8)

k=1
In Eq. (8) Qi denotes the angular velocity of
body k with respect to its inbhoard body and

matricies alny Cep™l and

may constructed from the

o~
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Cx - C; CxT is a transformation matrix., Again,
rewriting Eq. (8) in matrix form yields

e = n(n;Cy)Q (9)
Combining Eqs. {4) and (9) results in .
9oL = pn(nCy)Q (10)

Using Eqgs. (7) and (9), we form a velocity
transformation matrix such that

[ ]
- [n(n,-,- Cup™) alxy Crn ™ ( _Zi,r+ .ijr)]Pn(lﬁCﬁ))][.f]_.
0 n(xg;Cy) 2
=5[]
Or,
X = Bx (11)

Equation (11) defines the Kinematic relationship
between the absolute coordinates and relative
coordinates, Note that the velocity
transformation matrix B is not necessarily a
square matrix. In other words, the number of
relative cooridantes can be less that that of the
absolute coordinates if due consideration on the
system geometry and constraints has been made in
getting the matrix B. ’

Kinetics

Now we derive the equations of motion of each
component body treating it as an independent one.
Translation

Referring to Fig. 3, we apply Newton’'s second
law to a generic mass dm; to get

LR+ ayxp; + wpx( 9;x 9)ldm; . d f; (12)
In the above p; locates m; in the body j.

Integrating Eq. (12) over the volume of body j
vields

m; R; + _ﬁjXJ pidm; + g;x( m,-x_[ 2;dm;)

= Jdg (13)
Let us define
Le'= Ig,-dm,- (14)

= the position vector of the center of
mass in the body-fixed coordinate system.
Then we rewrite Eq. (13) using matrix notation
and considering coordinate transformation as
m;j _Rj + CJ_T Ejat + ch + Eil‘nzrﬁi

= FE; + Ef (15)

- T .
Ljie @ =

where
E;* = external force on body j,
E; = constraint force due to adjacent bodies,

inertiol T - -
E; = -G oW 9 Ljc.

Rotation

To obtain the rotational equations of body j
about its attach point P;, we take the vector
cross product of Eq. (12) with p; and integrate

over body j. The result in matrix form is,

[Cadmpc B+ [C 37 2dmp &
= - a0 &7 ydmpa; + [ wd s (16)

We define [; = 5,7 b;dm;. the moment of

inertia matrix of body j about the point P;.
Then Eq. (16) is rewritten as

LG By » Ly = M+ MF o+ M

= M; + M* (17)

where

M;** = external moment on body j about P;,

MF =
bodies,

.M]V ol = "J-njljmj.

constraint moment due to adjacent

Equationg of motion of body i
Combining Eqs. (15) and (17) we get the
equations of motion of body j in terms of the
ahsolute coordinates as follows:
m o (OB E e E] g
I Cj I; Qj M; + M©
Equations of motion of the system of n bodies
We have n equatins similar to Eq. (18) for
each component bodies of the n-body system. If
we stack up Eq. (18) in appropriate manner, we
get

o - 16

Moy Mzll M + M-
Or

MX = Q+ gr .- +(19)
where

k=« R" R".. RO

. T . T
o= a1, 82 ,.., 9,7

rmy 0 .. O

My = 0 m.. 0 , 3nx3n matrix
. m
( 1T 0 0
- T
Mz = 0 € r2Ca) . 0 , 3nx3n matrix
v { ZnCa)T

My = Mp

rl; 0 ... 0
Mz = 01 .0 , 3nx3n matrix

......... In
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Constraints

‘In the previous section, we have used two
types of coordinates. One is the absolute ones
which define the absolute position and rotation
of body j. The other ones defines the positon
and rotation of body j with respect to its
inboard body L(j). If the velocity
transformation matrix B is chosen such that the
result is a minimal set of coordinates to
describe the system state, one may substitute Eq.
(11) into Eq. (19) and multiply the resulting
equations by BT to get i

B™Bx = B"Q + BT @° -B™MBx 120)

The two orthogonal and complimentary subspaces
of matrix B which results in a minimal set of
relative coordinates, column and null spaces, has
very important properties., The column space of
matrix satisfies the system constraints and its
null space defines the possible direction of
motion of the system. Due to this, we have
always

BT = Q (21)
When the transformation matrix B does not result
in a minimal set of relative coordinates (it
could be a nxn square matrix for a change of
variables) or there are additional constraints
due to such as a closed loop in the system
geometry, BT Q° is not always a zero vector.

In most cases, the constraint conditions may
be expressed in the form of equations,

Alxt)x = glxe) (22)
Equation (22) may represent holononic,
nonholononic or mixed constraint equations. If
that is the case, the still unknown constraint
force BT ©Q° can be rearranged and expressed [18]
as -

BT @ = -AT) (23)
where 1 represents the Lagrange's multiplier
vector which is related to the constraint forces
and moments.

Now if we combine Eqgs. (20) and (22), we
finally get

[BHWB A [_x] .| B"Q-B™MBx (24)

4 0dla [ 2zt 3L 5 -2k
Numerical implementation
The procedure addressed in this paper is
especially suitable for computer numerical
implementation. In the following a step-by-step
procedure of obtaining the equations of motion of
a multibody system is presented.

Step 1) Define system geometry
- Construct the path matrix
- Define reference body operator

Step 2) Form the transformation matrix [Eq. (11)]
Step 3) Build up the system mass matrix[Eq. (19)]
Step 4) Indentify external force and moment

[Eqs. (15) and (17)]
Step 5) Define the constraint matrix(Eq. (22)1]
Step 6) Set up augmented equations of motion

[See Eq. (24)]

Step 7) Solve Eq. (24) for x and ) and
integrate
For a general purpose mnultibody aimulation

program, one may automate Steps 2), 3), 6), and
7). The system geometry, mass properties of each
component bodies, and special constraints may be
provided as input to the main program.

Conclusions

An efficient method of formulating the
equations of motion of multibody systems has been
presented. This method is especially suitable for
computer numerical implementation. The.uée of
path matrix and reference matrix was shown to
expedite the development of a general purpose
multibody gimulation program, Also a
step-by-step solution procedure was presented.
The current method is belived to be applicable to
the flexible multibody systems.
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