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EXISTENCE OF SOLUTION OF FINITE SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS

MI-RAY Oum

1. Introduction

The mathematical formulation of many problems arising in practice
leads to boundary value problems for partial differential equations -
especially of parabolic type- with the feature that the boundary is not
prescribed in advance but depends on certain properties of the solution
itself. Probably the oldest such free boundary problem is due to Stefan
(1889). In one space dimension, it may be descrided as follows: In a
domain

Q:={(y,7) | 7>0,0<y < s(r)}

a function u is sought as the solution of the heat equatioin
Ur — Uyy = [ in Q

The initial temparature u(y, 0) with compatiblity conditions as well as
the water temparature at y = 0:

u(0,7) = f(7) 0<r<T,
are prescribed. The free boundary y = s(7) is defined by the condition
u(s(r),7) =0
and th;a additional condition

Sr+uy(s(r),7) =0.
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The melting (or freezing) of an ice block is one of the physical interpre-
tations.

The approach presented in this paper is based on the transformation
of the Stefan problem in one space dimension to an initial-boundary
value problem for the heat equation in a fixed domain. Of course, the
problem is non-linear. The finite element approximation adopted here
is the standard continuous Galerkin method in time. In this paper, only
the regular case is discussed. This means the error analysis is based on
the assumption that the solution is sufficiently smooth.

The aim of this paper is the existence of the solution in a finite
Galerkin system of ordinary equations.

2. Weak formulation of the Stefan problem,
finite element method

The Stefan problem is Problem Py: Given Ty > 0, g(y) € C'(0,1)
with g(1) = 0 and f(7) € C?*(0,Ty]). Find {(s(7),U(y, 7))} such that

s(r)>0 for 0<7<Ty

s(0) =1,
Uyy—Ur =0 in Q={(y,N0<7<T,0<y<s(r)}
U(0,7) = f(7)

U(s(t),7)=0 for 0<7<T,
U(y,0) = g(y)  for y €(0,1)

and in addition

d
d—:_+Uy(S(T),T)=0 for 0 < 7 < Tp.

In order to reduce this problem to one with fixed boundaries, we
introduce the new space variable

z=s"Y 1. (2.1)
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Existence of solution of finite system

The corresponding transformation of 7 defined by

dr 9 _
= = (1), 7(0)=0 (2.2)

leads for the formulation u(z,t) = U(y,7) to Problem P,1: Find
{s(t),u(z,t),7(¢)} such that

Uzz — U = Tuz(1,t)us(z,t) in Q={(z,t)lr€I,0<t<T} (2.3)

%::_ = —uz(1,t)s(t), s(0)=1 for 0<t<T (2.4)
Z_z = 32(t), T(O) =0 (25)

with the boundary conditions

u(0,t) = f(7(t)), uw(1,t)=0 for 0<t<T (2.6)
and the initial condition

u(z,0) = g(x) for 0<a2<1.

Here t = T corresponds to 7 = Tp. The original Stefan problem is
now split into a nonlinear parabolic initial boundary value problem for
a fixed domain and two ordinary differential equations (2.4) and (2.5).
If the boundary condition at = = 0 is time-dependent, the parabolic

problem and the ordinary differential equations are coupled.
Let us introduce the space

Hy = {w| w € Hy,w(l) = 0}

Then u belongs to H,. Multiplication of (2.3) by wg,, with w € H,
and integration give

(uxa:’ wx:c) — (ug, wez) = Ur(lat)(wuwixz)
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here (-,-) denotes the L(0,1)-scalar product. For simplicity u' and
2 denote differentiation with respect to z and ¢. Differentiation the
equation (2.6) with respect to time t gives

d
i(0,) = Lirysre)
w(l,t) =0 for 0 <t <T.

In this way we come to Problem P,2: Find {s(t),u(z,t),7(t)} such that
u(-,t) € Hy and

(@, w") + (v, w") =« (1,t)(2u', w") - f 2w'(O) (2.7)
% = —u,(1,t)s(t), s(0)=1 for 0<t<T (2.8)

' dr
:i't"—_—.: (t 7(0) =10 (2.9)

for w € Hy and 0<tT
with the initial condition
u(z,0) = g(x) for 0<z< 1.

(2.7) is the weak formulation of (2.3) and (2.6).

There are many methods for getting finite element solutions. We
will study only the standard one: Let S} = S,2l’r, denote the continuous
splines of order r with r > 5, i.e.,S, consists of continuous piecewise
polynomial functions of degree less than r for some regular subdivision
Iy of (0,1). Up to fixed factors, & is a lower and an upper bound of the
length of the subintervals of I',. Furthermore

Sk = {w] w € Sp,w(l) = 0}

In this way, 5";, - Hg. The finite element nj.ethod is Problem P,,: Find
{sn{t), un(z,t), 7h(ey} such that us(-,t) € S, and

(l.“’hv XI) + (ulli’ XI') - “’h(l f r“hw\“) iqh/\ (0) (210)
ClSh
oy —(up) (1,t)sn(t), sn(0)=1for 0<t<T (2.11)
d
% = s2(t), 7h(0) =0 (2.12)

312



Existence of solution of finite system
for x € 5-'/,; and 0<t<T
with the initial condition

up(+,0) = Ppg.

Here P, is a projection onto S.

3. Existence of solution

Since Sy is finite dimensional the problem P,, results in a finite
system of ordinary differential equations. Therefore u; always exists
locally i.e., in a certain interval (0,%), here £ may depend on g but not
on Sy.

THEOREM. Problem P,, has a solution locally.

Proof. (2.8) with x = up, gives -

1d

- n_ 4
5 g eall” + IRl = (L O @ul, uf) = S=(ma(8)shul(0,8). (3.1)

By Mean-value theorem there exists v € (0, 1) such that

Uh(l’t) - uh(ovt.) = ulh(d)vt)'

On the other hand, from Taylor's theorem

1
ur(0,t) = un(1,t) —/ ul(z.t)dz.
0
Thus we have 1
(6, ) = / iy (2,4)dz.
0

From this we get
2
up (.1) < [luy]®. (3.2)
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By Taylor’s theorem we have
1
L0 =0 +2 [

v
wh 2 (0,4) = !l * (¢, t)-"/ upuy.

So, we have the inequalities

1 1

e (1, 0)] < Jlubll + V2l ¥ |lui | ?
1 1

[wh (0, )] < flufll + V2l |2 )2

(3.3)
Let ¢; := oréltang|E(Th(t)),'- Then we have from (3.1) and (3.2)
I 1 1
th”“h”2 + i l? Uil + V202 i) lui gl (34)
+ersi(llull + Vb ¥ i) ).
By Young;’s inequality, we can have
2 2
2 + Il (35)

3
<2 ll* + —!Iu'/ill2 + HUZ.II6 + 2 il + easilluil

4 8
+ 8 s [|uf[® + 5 Ilu I1®
Sggllenl” + I l® + 20ch 1 + exsEllachl + 3ed s s 12

Next, we give the estimate for (b%) Multiplication (2.8) by 2s, gives

(s3) = —2u}(1,)s}
From (3.3) and Young’s inequality, we get

: 1 1
(s3) < 2(fub |l + V21 |2 e l|7)s3 (3.6)

1 2 2
< 2silluhll + g5 luhll® + 653 luill®.
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Existence of solution of finite system

In order to connect (3.5) with (3.6), we introduce a function A = A(t),
which is dependent on ||u}||? and on s2. Define

A(t) = llupll® + i (t) + L. (3.7

We can see A(t) > 1 for all ¢ > 0. Differentiation (3.7) with respect to
t and (3.6) gives

. d
'\(t)" ” W% + ->h()

1 L 2
< S + ol + 253 o+ 65 3 (3.8)

d 7 8 2
< S + o+ 253 | + 6 [ 3.
Estimating the first two terms of right hand side of (3.8). (3.5) gives
: . 4 !
At) < 20lupll® + 4llubll* + (21 + 2)shlluh |l + (6cF + 6)s7 [luf]|¥
<2 407 4 (¢ + 1)2A% + A+ (6cF +6)A%, (3.9)

The second inequality follows from construction of A in (3.7). Since
A(t) > 1, (3.9) gives

M) <ex®  with @ =T+ (e + 1)% + (6¢F +6). (3.10)
For the function A, the initial condition
AM0) = Ao = [|Prg'||> + 2 (3.11)

holds. For this function A with (3.10) and (3.11) we construct a function
¢ = p(t), which satisfies the following integral inequality

p(t) > &l 1(0) > Ao. (3.12)

By monotone increasing kernel theorem and from ( 3.10) and (3.12),we
have 0 < A < . We give an explicit function u = u(t) and prove the
inequalities (3.12). Put

1 /1 2, -3
,u(t)_z)\g()—s—c7)\ ) . (3.13)
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Then 5
p(0) = Z/\o > Ao
and
1 1,73
_ 2  _ 2
alt) = 2 7A 4,\0(95 6=} ) (3.14)
—= (5 - A2t>_%
56 0\ 25 ~ 6770
1 11 -3 7
_a,\gc(m c;})\gt) =¢u(t) for t< 05)\2_.

But the condition on t does not mean the restriction, since in relation
to the existence of solution of problem P,, we only deal with a small
interval. With (3.13) we have also a solution of integral inequalities
(3.12). Since the continuous function g is bounded on the closed interval
0<t< '5'3‘13‘5’ every solution of integral inequality (3.10) is bounded on

the closed interval 0 < t < —%=. On the ground of the construction
SAGE &

(3.7) we have the bounds of |[u}]|* and s}. Let

cs = max si(t).
0<’S;r

Then (3.5) gives

1 3
2Ll + N <2 + Sl 7 + s+ S

z 1.
+aealubll +3ere) il ¥ + g lualt3.15)

Since the last term is smaller than Z5|lu}/||?, |lu}||* terms in both sides
of (3.15) vanishe and we get

d 1 5 s
Sl <3 + —nu,,nﬁ ol + 2(VEere)?
R+ S(6@c) R +slal®  (310)
=%nu,,|| +e
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Existence of solution of finite system

with 1 s 5
¢ = § + 6(2%C163)% + 5(6(6]63)% )g.

There are two cases. First we consider the case of |lu]| < 1. From
existence theorem of heat equation there exists a solution. Second in
case of ||uj|| > 1, from (3.16) we have

d 79 .
ZIAl® < Ll + ¢ (3.17)
9 5 . ,
< max{g" + & Se1Pag'IP + 41Pag’l + 7 P Bl %)

=: ¢l .

For simplicity let h(¢) := {|u}]|?, then
P h

d
Eh(t) < 'h3(t). (3.18)
Integration (3.18) gives
R*(0) 1
RI(t) < ———2 —_—
v =5 Taomio) O U< 2an7)
So, we have
Prg'|? 1
ulhll? < I for t < ————.
” h” = (1— 2c't||P/,g'||4)% 20'||Phg'”4

Since ¢ is sufficiently smooth, we can assume || Pyg’|| is uniformly boun-
ded i.e., ||Prg'l < ¢(g). With this assumption the Existence theorem
of heat equation guarantees the existence not only of uj, and but also
of uy, for all ¢ with
1
2c'c(g)

From definition of ¢’ in (3.17) and because of (3.19),

(3.19)

Therefore the condition on ¢ in
P,, has a local solution.
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