• Title/Summary/Keyword: Differential Geometry

Search Result 189, Processing Time 0.027 seconds

AN INVARIANT FORTH-ORDER CURVE FLOW IN CENTRO-AFFINE GEOMETRY

  • Yuanyuan Gong;Yanhua Yu
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.743-760
    • /
    • 2024
  • In this paper, we are devoted to study a forth order curve flow for a smooth closed curve in centro-affine geometry. Firstly, a new evolutionary equation about this curve flow is proposed. Then the related geometric quantities and some meaningful conclusions are obtained through the equation. Next, we obtain finite order differential inequalities for energy by applying interpolation inequalities, Cauchy-Schwartz inequalities, etc. After using a completely new symbolic expression, the n-order differential inequality for energy is considered. Finally, by the means of energy estimation, we prove that the forth order curve flow has a smooth solution all the time for any closed smooth initial curve.

Modern History of Parabolic Equations on a Riemannian manifold (리이만 다양체에서 포물형 편미분 방정식에 관한 근현대사 고찰)

  • Chang, Jeong-Wook
    • Journal for History of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 2011
  • Partial differential equations on a Riemannain manifold is one of the most important areas in differential geometry. In this article, we survey the role of parabolic equations on some of the main results of differential geometry and topology, especially in the modern mathematical history. Also, we introduce some recent research in this area.

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.

ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE

  • Ayyildiz, Nihat;Yucesan, Ahmet
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1339-1355
    • /
    • 2006
  • This paper develops in detail the differential geometry of ruled surfaces from two perspectives, and presents the underlying relations which unite them. Both scalar and dual curvature functions which define the shape of a ruled surface are derived. Explicit formulas are presented for the computation of these functions in both formulations of the differential geometry of ruled surfaces. Also presented is a detailed analysis of the ruled surface which characterizes the shape of a general ruled surface in the same way that osculating circle characterizes locally the shape of a non-null Lorentzian curve.

Development of Geometry in the 19th century and Birth of Lie's theory of Groups (19세기 기하학의 발달과 리군론의 시작)

  • Kim, Young Wook;Lee, Jin Ho
    • Journal for History of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.157-172
    • /
    • 2016
  • Sophus Lie's research is regarded as one of the most important mathematical advancements in the $19^{th}$ century. His pioneering research in the field of differential equations resulted in an invaluable consolidation of calculus and group theory. Lie's group theory has been investigated and constantly modified by various mathematicians which resulted in a beautifully abstract yet concrete theory. However Lie's early intentions and ideas are lost in the mists of modern transfiguration. In this paper we explore Lie's early academic years and his object of studies which clarify the ground breaking ideas behind his theory.

Kinematic Modeling for Autonomous Bicycle Using Differential Motion Transformation (미소운동 변환을 이용한 자율주행 자전거의 기구학 모델)

  • Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.292-297
    • /
    • 2013
  • This paper presents a new method of kinematic modeling for autonomous bicycle by using the differential motion transformation. Kinematic model is indispensable to trajectory planning and control for an autonomous mobile robot. The conventional methods of kinematic modeling for an autonomous bicycle depend on intuition by geometry. On the contrary, the proposed method in this paper is based on the systematic differential motion transformation, thus applicable to various types of autonomous bicycles. The differential motion transformation gives Jacobian between two coordinate frames and the velocity kinematics as a result.

RECENT DEVELOPMENTS IN DIFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS

  • Flaherty, F.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 1987
  • I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string picture of quantum gravity. I should mention that I will not have time do discuss either classical mechanics or symplectic structures. This is especially unfortunate, because one of the roots of differential geometry is planted firmly in mechanics, Cf. [GS]. The French geometer Elie Cartan first formulated his invariant approach to geometry in a series of papers on affine connections and general relativity, Cf. [C]. Cartan was trying to recast the Newtonian theory of gravity in the same framework as Einstein's theory. From the historical perspective it is significant that Cartan found relativity a convenient framework for his ideas. As about the same time Hermann Weyl in troduced the idea of gauge theory into geometry for purposes much different than those for which it would ultimately prove successful, Cf. [W]. Weyl wanted to unify gravity with electromagnetism and though that a conformal structure would fulfill thel task but Einstein rebutted this approach.

  • PDF

ON THE CONFORMAL TRIHARMONIC MAPS

  • Ouakkas, Seddik;Reguig, Yasmina
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.607-629
    • /
    • 2022
  • In this paper, we give the necessary and sufficient condition for the conformal mapping ϕ : (ℝn, g0) → (Nn, h) (n ≥ 3) to be triharmonic where we prove that the gradient of its dilation is a solution of a fourth-order elliptic partial differential equation. We construct some examples of triharmonic maps which are not biharmonic and we calculate the trace of the stress-energy tensor associated with the triharmonic maps.

Mesh Simplification Algorithm Using Differential Error Metric (미분 오차 척도를 이용한 메쉬 간략화 알고리즘)

  • 김수균;김선정;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.288-296
    • /
    • 2004
  • This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even though it has a small distance error measured in distance error metric. This paper proposes a new differential error metric that results in unifying a distance metric and its first and second order differentials, which become tangent vector and curvature metric. Since discrete surfaces may be considered as piecewise linear approximation of unknown smooth surfaces, theses differentials can be estimated and we can construct new concept of differential error metric for discrete surfaces with them. For our simplification algorithm based on iterative edge collapses, this differential error metric can assign the new vertex position maintaining the geometry of an original appearance. In this paper, we clearly show that our simplified results have better quality and smaller geometry error than others.

An Approximation Theorem for Two-Parameter Wiener Process

  • Kim, Yoon-Tae
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 1997
  • In this paper, a two-parameter version of Ikeda-Watanabe's mollifiers approximation of the Brownian motion is considered, and an approximation theorem corresponding to the one parameter case is proved. Using this approximation, we formulate Wong-Zakai type theorem is a Stochastic Differential Equation (SDE) driven by a two-parameter Wiener process.

  • PDF