• 제목/요약/키워드: Diagnosis Function

검색결과 1,414건 처리시간 0.032초

LaVIEW를 이용한 휴대용 3상 소형유도전동기 회전자 바 고장 진단 시스템 개발 (The Development of Portable Rotor Bar Fault Diagnosis System for Three Phase Small Induction Motors Using LabVIEW)

  • 송명현;박규남;한동기;이태훈;우혁재
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, a portable rotor bar fault diagnosis system for small 3 phase induction motors is suggested. For portable real-tine diagnosis system, an USB-DAQ board for collecting the 3 phase current data, three current probes, and a notebook computer are used. The LabVIEW graphical language is used for filtering, analysis, storing, and monitoring the current data. The three phase stator current are filtered and transformed to frequency level by FIT. An analysis window programed by LabVIEW is located in front panel to show the FIT results and this suggested window has a zooming function to detect the fault feature more easily near the feature frequency range which is varying by the slip frequency. To show the possibility of portable rotor bar diagnosis system, three types(healthy, one rotor bar fault, two rotor bar fault) of rotor bar are intentionally prepared and compared by the suggested window of front panel. Experimental results are shown that a suggested diagnosis system is applicable to portable diagnosis system and the rotor bar fault is detected by the frequency window in front panel programed in LabVIEW graphical language.

미래기억 기능을 측정하기 위한 패러다임의 고안 (Development of Paradigm for Measuring Prospective Memory Function)

  • 박지원;권용현;김현정
    • 한국전문물리치료학회지
    • /
    • 제12권3호
    • /
    • pp.67-73
    • /
    • 2005
  • Prospective memory (PM) is related to remember to carry out a previously intented behaviour. The purpose of this study was to develop a paradigm for measuring PM function to diagnosis in mild cognitive impairment 1 or brain injury in patients 2. among brain injured patients Thirty-eight normal healthy subjects participated in current study. The paradigm was composed of four conditions: a baseline and three intention conditions (expectation, execution 1 and 2). In the expectation condition, subjects were asked to make a new response to intented stimuli during ongoing task, but the intented stimuli never occurred. In the execution 1 (one type of expected stimulus) and 2 (two types of expected stimuli), the intended stimuli did occur in 20% of trials. The reaction time and error rate were calculated in each condition. Repeated measures using ANOVA of subject's mean reaction times (RTs) and mean error rates (ERs) showed main effects of conditions during ongoing task. The comparison of PM tasks in executive condition 1 and 2 also showed significance in RTs and ERs. This paradigm reflects sufficiently the performance of prospective memory function during ongoing task in normal individuals. Thus, we suggest that the paradigm will be helpful to study neural network of PM function using brain imaging techniques and diagnosis of PM dysfunction.

  • PDF

Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network

  • Kumar, Sanjeev;Chandra, Mahesh
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.703-715
    • /
    • 2017
  • Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.

Roy's Adaptation Model에 의한 모성영역에서의 간호진단 확인연구 (A Study for Identification of Nursing Diagnosis using the Roy's Adaptation Model in Maternity Unit)

  • 조정호
    • 대한간호
    • /
    • 제33권3호
    • /
    • pp.79-91
    • /
    • 1994
  • The purpose of this study was to identify the meaningful nursing diagnosis in maternity unit and to suggest formally the basal data to the nursing service with scientific approach. The subject for this paper were 64 patients who admitted to Chung Ang University Hospital, Located in Seoul, from Mar. 10, to July 21, 1993. The results were as follows: 1. The number of nursing diagnosis from 64 patients were 892 and average number of nursing diagnosis per patient was 13.9. 2. Applying the division of nursing diagnosis to Roy's Adaptation Model, determined nursing diagnosis from the 64 patients were 621 (69.6%) in physiological adaptation mode and (Comfort, altered r/t), (Injury, potential for r/t), (Infection, potential for r/t), (Bowel elimination, altered patterns r/t), (Breathing pattern, ineffective r/t), (Nutrition, altered r/t less than body requirement) in order, and 139 (15.6%) in role function mode, (Self care deficit r/t), (Knowledge deficit r/t), (Mobility, impaired physical r/t) in order, 122 (13.7%) in interdependence adaptation mode, (Anxiety r/t), (Family Process, altered r/t) in order, 10(1.1%) in self concept adaptation mode, (Powerlessness r/t), (Grieving, dysfunctional r/t) in order. 3. Nursing diagnosis in maternity unit by the medical diagnosis, the average hospital dates were 3.8 days in normal delivery and majority of used nursing diagnosis, (Comfort, altered r/t) 64.6%, (Self care deficit r/t) 13.6% in order, and the average hospital dates were 9.6 days in cesarean section delivery and majority of used nursing diagnosis, (Comfort, altered r/t) 51.6%, (Self care deficit r/t) 15.2%, (Infection, potential for r/t) 9.9%, (Injury, potential "for r/t) 8.1%, (Anxiety r/t) 5.0%, (Mobility, impaired physical r/t) 3.3% in order, and the average hospital dates were 15.8days in preterm labor and majority of used nursing diagnosis, (Comfort, altered r/ t), (Anxiety r/t), (Injury, potential for r/t) in order, and the average short-term hospital dates were 2.5days, long-term hospital dates were 11.5days in gynecologic diseases and majority of used nursing diagnosis, (Comfort, altered r/t). (Self care deficit r/t), (Injury, potential for r/t), (Infection, potential for r/t) in order.

  • PDF

기초 온톨로지 기반 한의 진단 시스템 (Traditional Korean Medicine Diagnosis System Based on Basic Ontology)

  • 김상균;장현철;김진현;오용택;김철;예상준;송미영
    • 동의생리병리학회지
    • /
    • 제24권6호
    • /
    • pp.1111-1116
    • /
    • 2010
  • We in this paper design and implement a traditional korean medicine diagnosis system based on basic ontology. If doctors put the symptoms or tongues or pulses of a patient in the diagnosis system, they can be recommended for the diagnosis results. To support the doctors decision, the diagnosis system make the inference based on the basic ontology and compute the similarity between symptoms of patient and those of ontology. The diagnosis systems also provide the learning mechanism about diagnosis results which save the results in the ontology and reuse them in the next diagnosis. Thus, doctors can share their knowledge for the diagnosis by exchanging their ontology each other. In future, we will expand the knowledge of the basic ontology continuously so that doctors can get the more accurate diagnosis results. We also implement the prescription function and integrate it to the diagnosis system.

한방 설진에서 혀 영상 분할을 위한 개선된 스네이크 알고리즘 (Improved Snakes Algorithm for Tongue Image Segmentation in Oriental Tongue Diagnosis)

  • 장명수;이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.125-131
    • /
    • 2016
  • 한방 설진 시스템의 자동화 과정에서 혀 영상 분할은 가장 중요한 분야이다. 그러나 대부분의 한방 설진 시스템의 혀 영상 분할 방식은 사용자 기반의 메뉴얼 방식이나 반자동 방식으로 제안되어 왔다. 따라서 본 논문에서는 한방 설진 시스템의 완전 자동화를 위해서 기존의 스네이크 알고리즘을 기반으로 한 혀 영상 분할의 새로운 방법을 제안한다. 제안한 방법은 기존의 스네이크 알고리즘을 개선한 방법으로서 설진을 위한 혀 영상 특성을 이용하여 포인트들이 안에서 밖으로 역추적하면서 스네이크 에너지 함수가 최소화될 수 있도록 내부 에너지 함수를 개선하였고, 외부 에너지를 계산하기 위해서는 계층적 공간 필터링 방법을 적용하여 잡음에 강인한 특징을 갖는다. 또한 제안한 방법은 표본영상 실험과 실영상 실험을 수행한 결과, 기존 스네이크 알고리즘보다 배경 잡음에 강인함을 보였으며, 임의의 포인트 한 개를 선택하고 해당 포인트의 시작점, 중간점, 끝점에서의 에너지 값을 분석하여 국소적 최저치에 빠지지 않는 강인함을 보였다.

클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단 (Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function)

  • 박장환;이대종;전명근
    • 조명전기설비학회논문지
    • /
    • 제20권6호
    • /
    • pp.55-62
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 진단 절차를 위한 첫 번째 단계로서 전처리 과정은 획득한 전류를 단순화하고 정규화 하는 것을 수행한다. 데이터의 단순화 과정은 3상전류를 Concrodia 벡터의 크기로 변환하는 것을 적용한다. 다음으로 특징 추출 단계를 커널 주성분 분석과 선형판별분석으로 수행하며, 마지막으로, 분류기는 방사기저함수 네트워크를 사용한다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

Remote Diagnosis of Hypertension through HTML-based Backward Inference

  • Song, Yong-Uk;Chae, Young-Moon;Cho, Kyoung-Won;Ho, Seung-Hee
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.496-507
    • /
    • 2001
  • An expert system for the diagnosis and indication of hypertension is implemented through HTML-based backward inference. HTML-based backward inference is performed using the hypertext function of HTML, and many HTML files, which are hyperlinked to each other based on the backward rules, should be prepared beforehand. The development and maintenance of the HTML files are conducted automatically using the decision graph. Still, the drawing and input of the decision graph is a time consuming and tedious job if it is done manually. So, automatic generator of the decision graph for the diagnosis and indication of hypertension was implemented. The HTML-based backward inference ensures accessibility, multimedia facilities, fast response, stability, easiness, and platform independency of the expert system. So, this research reveals that HTML-based inference approach can be used for many Web-based intelligent site with fast and stable performance.

  • PDF

Condition Monitoring of Check Valve Using Neural Network

  • Lee, Seung-Youn;Jeon, Jeong-Seob;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2198-2202
    • /
    • 2005
  • In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.

  • PDF

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF