DOI QR코드

DOI QR Code

Improved Snakes Algorithm for Tongue Image Segmentation in Oriental Tongue Diagnosis

한방 설진에서 혀 영상 분할을 위한 개선된 스네이크 알고리즘

  • 장명수 (상지대학교 컴퓨터정보공학부) ;
  • 이우범 (상지대학교 컴퓨터정보공학부)
  • Received : 2016.06.27
  • Accepted : 2016.08.05
  • Published : 2016.08.31

Abstract

Tongue image segmentation is critical for automation of the tongue diagnosis system. However, most image segmentation methods for tongue diagnosis systems in oriental medicine have been proposed as user-based manual types or semi-automatic types. This study proposed a new method for tongue image segmentation, which is the most important image processing stage for complete automation of the tongue diagnosis system in oriental medicine. The proposed method improved the conventional snake algorithm, by making improvement on the internal energy function so that, as the points move outward reversely, the snake energy function is minimized, by using the image characteristics of tongue images. To calculate external energy, hierarchical spatial filtering is applied to ensure resistance against noise. Also, The proposed method was tested by using sample images and actual images, and showed more robustness against the background noise than the conventional snake algorithm. And, when one selected point was moved by the improved snake algorithm, energy values at the starting, middle, and end points were analyzed, and showed robustness that does not fall in the local minima.

한방 설진 시스템의 자동화 과정에서 혀 영상 분할은 가장 중요한 분야이다. 그러나 대부분의 한방 설진 시스템의 혀 영상 분할 방식은 사용자 기반의 메뉴얼 방식이나 반자동 방식으로 제안되어 왔다. 따라서 본 논문에서는 한방 설진 시스템의 완전 자동화를 위해서 기존의 스네이크 알고리즘을 기반으로 한 혀 영상 분할의 새로운 방법을 제안한다. 제안한 방법은 기존의 스네이크 알고리즘을 개선한 방법으로서 설진을 위한 혀 영상 특성을 이용하여 포인트들이 안에서 밖으로 역추적하면서 스네이크 에너지 함수가 최소화될 수 있도록 내부 에너지 함수를 개선하였고, 외부 에너지를 계산하기 위해서는 계층적 공간 필터링 방법을 적용하여 잡음에 강인한 특징을 갖는다. 또한 제안한 방법은 표본영상 실험과 실영상 실험을 수행한 결과, 기존 스네이크 알고리즘보다 배경 잡음에 강인함을 보였으며, 임의의 포인트 한 개를 선택하고 해당 포인트의 시작점, 중간점, 끝점에서의 에너지 값을 분석하여 국소적 최저치에 빠지지 않는 강인함을 보였다.

Keywords

References

  1. W. B. Lee. "Implementation of Computerized Assistant Diagnosis Software for Tongue Diagnosis in the Oriental Medicine," Journal of the Institute of Electronics and Information Engineers, vol. 51(6), pp. 175-182, Jun. 2014. https://doi.org/10.5573/ieie.2014.51.6.175
  2. W, Jia et al. "Tongue area extraction in tongue diagnosis of traditional Chinese medicine," 2005 IEEE Engineering in Medicine and Biology, vol. 27, pp. 4955-4957, 2006.
  3. M. Kass et al. "Snakes: active contour models", International Journal of Computer Vision, Vol. 1(4), pp. 321-331, Jan. 1988, https://doi.org/10.1007/BF00133570
  4. P, Bo et al. "On automated tongue image segmentation in Chinese medicine," Pattern Recognition, 2002. Proceedings. 16th International Conference, vol. 1, pp. 616-619, 2002.
  5. C, Vicent et al. "Geodesic active contours," International journal of computer vision, vol.22(1), pp. 61-79, 1997. https://doi.org/10.1023/A:1007979827043
  6. C. A. Glasbey, "An analysis of histogram-based thresholding algorithms," CVGIP: Graphical models and image processing, vol. 55(6), pp. 532-537, Nov. 1993. https://doi.org/10.1006/cgip.1993.1040
  7. W. M. Rand, "Objective criteria for the evaluation of clustering methods," Journal of the American Statistical association, vol. 66(336), pp. 846-850, Apr. 1971. https://doi.org/10.1080/01621459.1971.10482356
  8. J. Canny, "A computational approach to edge detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 6. pp. 679-698, Nov, 1986.
  9. O. Ron et al. "Picture segmentation using a recursive region splitting method," Computer Graphics and Image Processing, vol. 8(3), pp. 313-333, Dec. 1978. https://doi.org/10.1016/0146-664X(78)90060-6
  10. V. Caselles et al. "Geodesic active contours," International journal of computer vision, vol. 22(1), pp. 61-79, Fed. 1997. https://doi.org/10.1023/A:1007979827043
  11. R. Nock and N. Frank. "Statistical region merging," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26(11), pp. 1452-1458, Nov. 2004. https://doi.org/10.1109/TPAMI.2004.110
  12. M. Kass et al. "Snakes: active contour models" International Journal of Computer Vision, vol. 1(4), pp. 321-331, Jan. 1988. https://doi.org/10.1007/BF00133570