DOI QR코드

DOI QR Code

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function

클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단

  • Published : 2006.07.31

Abstract

For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 진단 절차를 위한 첫 번째 단계로서 전처리 과정은 획득한 전류를 단순화하고 정규화 하는 것을 수행한다. 데이터의 단순화 과정은 3상전류를 Concrodia 벡터의 크기로 변환하는 것을 적용한다. 다음으로 특징 추출 단계를 커널 주성분 분석과 선형판별분석으로 수행하며, 마지막으로, 분류기는 방사기저함수 네트워크를 사용한다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

Keywords

References

  1. S. B. Dolines et al., 'A curve interpretation and diagnosis technique for industrial process,' IEEE Trans. Ind. Applicat., vol. 28, no. 1, pp. 261-267, January/ February 1992 https://doi.org/10.1109/28.120240
  2. J. Sottile et al., 'An overview of fault monitoring and diagnosis in mining equipment,' IEEE Trans. Ind. Applicat., vol. 30, no. 5, pp. 1326-1332, September/October 1994 https://doi.org/10.1109/28.315247
  3. D. Diall et al., 'Fault detection and diagnosis in an induction machine drive: a pattern recognition approach based on Concordia stator mean current vector,' IEMDC'03, vol. 3, pp. 1448-1453, June 2003
  4. S. Wu, T. Chow, 'Induction machine fault detection using SOM-based RBF neural network,' IEEE Trans. Ind. Elect., vol. 51, no. 1, pp. 183-194, February 2004 https://doi.org/10.1109/TIE.2003.821897
  5. W. T. Thomson, M. Fenger, 'Current signature analysis to detect induction motor faults,' IEEE Ind. Applicat. Magazine, pp. 26-34, July/August 2001
  6. Nejjari, M. H. Benbouzid, 'Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach,' IEEE Trans. Ind. Applicat., vol. 36, no.3, pp. 730-735, May/June 2000 https://doi.org/10.1109/28.845047
  7. Zidani et al., 'Induction motor stator faults diagnosis by a current Concordia pattern-based fuzzy decision system' IEEE Trans. Energy Conversion, vol. 18, no. 4, pp. 469-475, December 2004
  8. Bezdec, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981
  9. B. Scholkopf, A. Smola, 'Nonlinear component analysis as a kernel eigenvalue problem,' Neural Computation, vol. 10, pp 1299-1319, 1988 https://doi.org/10.1162/089976698300017467
  10. Richard O. Duda et al, Pattern Classification, John Wiley & Sons Inc, 2nd Ed., 2002