• Title/Summary/Keyword: Deterministic optimization

Search Result 225, Processing Time 0.02 seconds

Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network (유틸리티 네트워크와 수소 공급망 통합 네트워크 설계를 위한 결정론적 최적화 모델 개발)

  • Hwangbo, Soonho;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.603-612
    • /
    • 2014
  • Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network.

Reliability-Based Design Optimization Using Enhanced Pearson System (개선된 피어슨 시스템을 이용한 신뢰성기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.125-130
    • /
    • 2011
  • Since conventional optimization that is classified as a deterministic method does not consider the uncertainty involved in a modeling or manufacturing process, an optimum design is often determined to be on the boundaries of the feasible region of constraints. Reliability-based design optimization is a method for obtaining a solution by minimizing the objective function while satisfying the reliability constraints. This method includes an optimization process and a reliability analysis that facilitates the quantization of the uncertainties related to design variables. Moment-based reliability analysis is a method for calculating the reliability of a system on the basis of statistical moments. In general, on the basis of these statistical moments, the Pearson system estimates seven types of distributions and determines the reliability of the system. However, it is technically difficult to practically consider the Pearson Type IV distribution. In this study, we propose an enhanced Pearson Type IV distribution based on a kriging model and validate the accuracy of the enhanced Pearson Type IV distribution by comparing it with a Monte Carlo simulation. Finally, reliability-based design optimization is performed for a system with type IV distribution by using the proposed method.

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Retrofit strategy issues for structures under earthquake loading using sensitivity-optimization procedures

  • Manolis, G.D.;Panagiotopoulos, C.G.;Paraskevopoulos, E.A.;Karaoulanis, F.E.;Vadaloukas, G.N.;Papachristidis, A.G.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.109-127
    • /
    • 2010
  • This work aims at introducing structural sensitivity analysis capabilities into existing commercial finite element software codes for the purpose of mapping retrofit strategies for a broad group of structures including heritage-type buildings. More specifically, the first stage sensitivity analysis is implemented for the standard deterministic environment, followed by stochastic structural sensitivity analysis defined for the probabilistic environment in a subsequent, second phase. It is believed that this new generation of software that will be released by the industrial partner will address the needs of a rapidly developing specialty within the engineering design profession, namely commercial retrofit and rehabilitation activities. In congested urban areas, these activities are carried out in reference to a certain percentage of the contemporary building stock that can no longer be demolished to give room for new construction because of economical, historical or cultural reasons. Furthermore, such analysis tools are becoming essential in reference to a new generation of national codes that spell out in detail how retrofit strategies ought to be implemented. More specifically, our work focuses on identifying the minimum-cost intervention on a given structure undergoing retrofit. Finally, an additional factor that arises in earthquake-prone regions across the world is the random nature of seismic activity that further complicates the task of determining the dynamic overstress that is being induced in the building stock and the additional demands placed on the supporting structural system.

Bayesian ballast damage detection utilizing a modified evolutionary algorithm

  • Hu, Qin;Lam, Heung Fai;Zhu, Hong Ping;Alabi, Stephen Adeyemi
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • This paper reports the development of a theoretically rigorous method for permanent way engineers to assess the condition of railway ballast under a concrete sleeper with the potential to be extended to a smart system for long-term health monitoring of railway ballast. Owing to the uncertainties induced by the problems of modeling error and measurement noise, the Bayesian approach was followed in the development. After the selection of the most plausible model class for describing the damage status of the rail-sleeper-ballast system, Bayesian model updating is adopted to calculate the posterior PDF of the ballast stiffness at various regions under the sleeper. An obvious drop in ballast stiffness at a region under the sleeper is an evidence of ballast damage. In model updating, the model that can minimize the discrepancy between the measured and model-predicted modal parameters can be considered as the most probable model for calculating the posterior PDF under the Bayesian framework. To address the problems of non-uniqueness and local minima in the model updating process, a two-stage hybrid optimization method was developed. The modified evolutionary algorithm was developed in the first stage to identify the important regions in the parameter space and resulting in a set of initial trials for deterministic optimization to locate all most probable models in the second stage. The proposed methodology was numerically and experimentally verified. Using the identified model, a series of comprehensive numerical case studies was carried out to investigate the effects of data quantity and quality on the results of ballast damage detection. Difficulties to be overcome before the proposed method can be extended to a long-term ballast monitoring system are discussed in the conclusion.

Web-based Three-step Project Management Model and Its Software Development

  • Hwang Heung-Suk;Cho Gyu-Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.373-378
    • /
    • 2006
  • Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.

  • PDF

Improving the Training Performance of Neural Networks by using Hybrid Algorithm (하이브리드 알고리즘을 이용한 신경망의 학습성능 개선)

  • Kim, Weon-Ook;Cho, Yong-Hyun;Kim, Young-Il;Kang, In-Ku
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2769-2779
    • /
    • 1997
  • This Paper Proposes an efficient method for improving the training performance of the neural networks using a hybrid of conjugate gradient backpropagation algorithm and dynamic tunneling backpropagation algorithm The conjugate gradient backpropagation algorithm, which is the fast gradient algorithm, is applied for high speed optimization. The dynamic tunneling backpropagation algorithm, which is the deterministic method with tunneling phenomenon, is applied for global optimization. Conversing to the local minima by using the conjugate gradient backpropagation algorithm, the new initial point for escaping the local minima is estimated by dynamic tunneling backpropagation algorithm. The proposed method has been applied to the parity check and the pattern classification. The simulation results show that the performance of proposed method is superior to those of gradient descent backpropagtion algorithm and a hybrid of gradient descent and dynamic tunneling backpropagation algorithm, and the new algorithm converges more often to the global minima than gradient descent backpropagation algorithm.

  • PDF

A Genetic Algorithm Based Learning Path Optimization for Music Education (유전 알고리즘 기반의 음악 교육 학습 경로 최적화)

  • Jung, Woosung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • For customized education, it is essential to search the learning path for the learner. The genetic algorithm makes it possible to find optimal solutions within a practical time when they are difficult to be obtained with deterministic approaches because of the problem's very large search space. In this research, based on genetic algorithm, the learning paths to learn 200 chords in 27 music sheets were optimized to maximize the learning effect by balancing and minimizing learner's burden and learning size for each step in the learning paths. Although the permutation size of the possible learning path for 27 learning contents is more than $10^{28}$, the optimal solution could be obtained within 20 minutes in average by an implemented tool in this research. Experimental results showed that genetic algorithm can be effectively used to design complex learning path for customized education with various purposes. The proposed method is expected to be applied in other educational domains as well.

Structural system identification by measurement error-minimization observability method using multiple static loading cases

  • Lei, Jun;Lozano-Galant, Jose Antonio;Xu, Dong;Zhang, Feng-Liang;Turmo, Jose
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.339-351
    • /
    • 2022
  • Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.

Generalized Kriging Model for Interpolation and Regression (보간과 회귀를 위한 일반크리깅 모델)

  • Jung Jae Jun;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.277-283
    • /
    • 2005
  • Kriging model is widely used as design analysis and computer experiment (DACE) model in the field of engineering design to accomplish computationally feasible design optimization. In general, kriging model has been applied to many engineering applications as an interpolation model because it is usually constructed from deterministic simulation responses. However, when the responses include not only global nonlinearity but also numerical error, it is not suitable to use Kriging model that can distort global behavior. In this research, generalized kriging model that can represent both interpolation and regression is proposed. The performances of generalized kriging model are compared with those of interpolating kriging model for numerical function with error of normal distribution type and trigonometric function type. As an application of the proposed approach, the response of a simple dynamic model with numerical integration error is predicted based on sampling data. It is verified that the generalized kriging model can predict a noisy response without distortion of its global behavior. In addition, the influences of maximum likelihood estimation to prediction performance are discussed for the dynamic model.