DOI QR코드

DOI QR Code

A Genetic Algorithm Based Learning Path Optimization for Music Education

유전 알고리즘 기반의 음악 교육 학습 경로 최적화

  • Jung, Woosung (Graduate School of Education, Seoul National University of Education)
  • 정우성 (서울교육대학교 교육전문대학원)
  • Received : 2019.01.15
  • Accepted : 2019.02.20
  • Published : 2019.02.28

Abstract

For customized education, it is essential to search the learning path for the learner. The genetic algorithm makes it possible to find optimal solutions within a practical time when they are difficult to be obtained with deterministic approaches because of the problem's very large search space. In this research, based on genetic algorithm, the learning paths to learn 200 chords in 27 music sheets were optimized to maximize the learning effect by balancing and minimizing learner's burden and learning size for each step in the learning paths. Although the permutation size of the possible learning path for 27 learning contents is more than $10^{28}$, the optimal solution could be obtained within 20 minutes in average by an implemented tool in this research. Experimental results showed that genetic algorithm can be effectively used to design complex learning path for customized education with various purposes. The proposed method is expected to be applied in other educational domains as well.

맞춤형 교육을 위해 학습자에 맞는 학습 경로를 탐색하는 것은 필수적이다. 유전 알고리즘은 해공간이 매우 커서 결정적 방법으로 해를 구하기 어려울 때 타당한 시간 내에 최적해를 찾게 해준다. 본 연구는 유전 알고리즘을 이용하여 200개 코드를 가진 악보 27개를 대상으로 학습자 부담을 최소화하고 단계별 학습량을 균등하게 분산함으로써 학습 효과를 최대화 할 수 있도록 학습 경로를 최적화하였다. 학습 컨텐츠가 27개만 되어도 학습 경로의 순열 크기는 $10^{28}$을 넘지만, 본 연구에서 구현한 도구로 평균 20분 이내에 최적해를 구할 수 있었다. 실험 결과는 유전 알고리즘이 다양한 목적의 맞춤형 교육을 위한 복잡한 학습 경로 설계에 효과적임을 보여주었다. 제안한 방법은 다른 교육 도메인에도 활용할 수 있을 것으로 기대된다.

Keywords

OHHGBW_2019_v10n2_13_f0001.png 이미지

Fig. 1. An overall scenario for problem definition

OHHGBW_2019_v10n2_13_f0002.png 이미지

Fig. 2. Activity diagram for overall approach

OHHGBW_2019_v10n2_13_f0003.png 이미지

Fig. 3. Layered architecture of the proposed optimizer

OHHGBW_2019_v10n2_13_f0004.png 이미지

Fig. 4. Database schema for MusicXMLParser

OHHGBW_2019_v10n2_13_f0005.png 이미지

Fig. 5. A meta-model for learner’s profile

OHHGBW_2019_v10n2_13_f0006.png 이미지

Fig. 6. Chromosome and fitness function for learning path optimization

OHHGBW_2019_v10n2_13_f0007.png 이미지

Fig. 7. Genetic algorithm for learning path optimization

OHHGBW_2019_v10n2_13_f0008.png 이미지

Fig. 8. static analysis of the results

Table 1. Experimental results based on chord rate

OHHGBW_2019_v10n2_13_t0001.png 이미지

Table 2. Experimental results based on chord count

OHHGBW_2019_v10n2_13_t0002.png 이미지

References

  1. M. Bhaskar, M. Das, T. Chithralekha & S. Sivasatya. (2010). Genetic Algorithm Based Adaptive Learning Scheme Generation For Context Aware E-Learning. International Journal on Computer Science and Engineering, 2(4), 1271-1279.
  2. A. Kumar, N. Singh & N. Ahuja. (2017). Learning Styles based Adaptive Intelligent Tutoring Systems: Document Analysis of Articles Published between 2001 and 2016. International Journal of Cognitive Research in Science, Engineering and Education, 5(2), 83-97. https://doi.org/10.5937/ijcrsee1702083K
  3. P. Karampiperis & D. Sampson. (2008). Adaptive Learning Resources Sequencing in Educational Hypermedia Systems. Educational Technology & Society, 8(4), 128-147.
  4. Z. Fan & C. Jiaheng. (2008). Learning Activity Sequencing in Personalized Education System. Journal of Natural Sciences, 13(4), 461-465.
  5. F. Edson & J. Valente. (2004). A New Approach to Meaningful Learning Assessment Using Concept Maps: Ontologies and Genetic Algorithms. Proc. of the 1st Conference on Concept Mapping. (pp.175-182). Pamplona.
  6. T. Lakshmi, A. Martin & V. Venkatesan. (2013). An Analysis of Students Performance Using Genetic Algorithm. Journal of Computer Science and Applications, 1(4). 75-79. https://doi.org/10.12691/jcsa-1-4-3
  7. D. Anastasiu, N. Bold & D. Nijloveanu. (2016). A Method Based on Genetic Algorithms for Generating Assessment Tests Used for Learning. Polibits, 54(1). 53-60. https://doi.org/10.17562/PB-54-7
  8. B. Velusamy, S. Anouneia & G. Abraham. (2013). Reinforcement Learning Approach for Adaptive E-learning Systems using Learning Styles. Information Technology Journal, 12(12), 2306-2314. https://doi.org/10.3923/itj.2013.2306.2314
  9. A. Sukstrienwong. (2017). A Genetic-algorithm Approach for Balancing Learning Styles and Academic Attributes in Heterogeneous Grouping of Students. International Journal of Emerging Technologies in Learning, 12(3). 4-25. https://doi.org/10.3991/ijet.v12i03.5803
  10. F. Dorca, L. Lima, M. Fernandes & C. Lopes. (2013). Automatic student modeling in adaptive educational systems through probabilistic learning style combinations: a qualitative comparison between two innovative stochastic approaches. Journal of the Brazil Computer Society. 19(1). 43-58. https://doi.org/10.1007/s13173-012-0078-2
  11. J. Bernard, T. Chang, E. Popescu & S. Graf. (2017). Learning Style Identifier: Improving the Precision of Learning Style Identification Through Computational Intelligence Algorithms. Expert Systems with Applications, 75. 94-108. https://doi.org/10.1016/j.eswa.2017.01.021
  12. D. Anitha & C. Chelliah. (2013). A Novel Approach for Selection of Learning Objects for Personalized Delivery of E-Learning Content. International Conference on Computer Science & Information Technology. (pp.413-420). Yogyakarta.
  13. L. Marcos, J. Martinez, J.-A. Gutierrez, R. Barchino, J. Hilera, S. Oton & J.-M. Gutierrez. (2011). Genetic Algorithms for Courseware Engineering. International Journal of Innovative Computing, Information and Control, 7(7). 3981-4004.
  14. D. Matic (2010). A Genetic Algorithm for Composing Music. Yugoslav Journal of Operations Research, 20(1). 157-177. https://doi.org/10.2298/YJOR1001157M
  15. M. Alfonseca, M. Cebrian & A. Puente (2007). A Simple Genetic Algorithm for Music Generation by Means of Algorithmic Information Theory. Proc. of the IEEE Congress on Evolutionary Computation. (pp.25-28). Singapore.