• 제목/요약/키워드: Learning path

검색결과 467건 처리시간 0.031초

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.

Path Planning for a Robot Manipulator based on Probabilistic Roadmap and Reinforcement Learning

  • Park, Jung-Jun;Kim, Ji-Hun;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.674-680
    • /
    • 2007
  • The probabilistic roadmap (PRM) method, which is a popular path planning scheme, for a manipulator, can find a collision-free path by connecting the start and goal poses through a roadmap constructed by drawing random nodes in the free configuration space. PRM exhibits robust performance for static environments, but its performance is poor for dynamic environments. On the other hand, reinforcement learning, a behavior-based control technique, can deal with uncertainties in the environment. The reinforcement learning agent can establish a policy that maximizes the sum of rewards by selecting the optimal actions in any state through iterative interactions with the environment. In this paper, we propose efficient real-time path planning by combining PRM and reinforcement learning to deal with uncertain dynamic environments and similar environments. A series of experiments demonstrate that the proposed hybrid path planner can generate a collision-free path even for dynamic environments in which objects block the pre-planned global path. It is also shown that the hybrid path planner can adapt to the similar, previously learned environments without significant additional learning.

Path Planning of Unmanned Aerial Vehicle based Reinforcement Learning using Deep Q Network under Simulated Environment (시뮬레이션 환경에서의 DQN을 이용한 강화 학습 기반의 무인항공기 경로 계획)

  • Lee, Keun Hyoung;Kim, Shin Dug
    • Journal of the Semiconductor & Display Technology
    • /
    • 제16권3호
    • /
    • pp.127-130
    • /
    • 2017
  • In this research, we present a path planning method for an autonomous flight of unmanned aerial vehicles (UAVs) through reinforcement learning under simulated environment. We design the simulator for reinforcement learning of uav. Also we implement interface for compatibility of Deep Q-Network(DQN) and simulator. In this paper, we perform reinforcement learning through the simulator and DQN, and use Q-learning algorithm, which is a kind of reinforcement learning algorithms. Through experimentation, we verify performance of DQN-simulator. Finally, we evaluated the learning results and suggest path planning strategy using reinforcement learning.

  • PDF

Path selection algorithm for multi-path system based on deep Q learning (Deep Q 학습 기반의 다중경로 시스템 경로 선택 알고리즘)

  • Chung, Byung Chang;Park, Heasook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제25권1호
    • /
    • pp.50-55
    • /
    • 2021
  • Multi-path system is a system in which utilizes various networks simultaneously. It is expected that multi-path system can enhance communication speed, reliability, security of network. In this paper, we focus on path selection in multi-path system. To select optimal path, we propose deep reinforcement learning algorithm which is rewarded by the round-trip-time (RTT) of each networks. Unlike multi-armed bandit model, deep Q learning is applied to consider rapidly changing situations. Due to the delay of RTT data, we also suggest compensation algorithm of the delayed reward. Moreover, we implement testbed learning server to evaluate the performance of proposed algorithm. The learning server contains distributed database and tensorflow module to efficiently operate deep learning algorithm. By means of simulation, we showed that the proposed algorithm has better performance than lowest RTT about 20%.

Path Loss Prediction Using an Ensemble Learning Approach

  • Beom Kwon;Eonsu Noh
    • Journal of the Korea Society of Computer and Information
    • /
    • 제29권2호
    • /
    • pp.1-12
    • /
    • 2024
  • Predicting path loss is one of the important factors for wireless network design, such as selecting the installation location of base stations in cellular networks. In the past, path loss values were measured through numerous field tests to determine the optimal installation location of the base station, which has the disadvantage of taking a lot of time to measure. To solve this problem, in this study, we propose a path loss prediction method based on machine learning (ML). In particular, an ensemble learning approach is applied to improve the path loss prediction performance. Bootstrap dataset was utilized to obtain models with different hyperparameter configurations, and the final model was built by ensembling these models. We evaluated and compared the performance of the proposed ensemble-based path loss prediction method with various ML-based methods using publicly available path loss datasets. The experimental results show that the proposed method outperforms the existing methods and can predict the path loss values accurately.

A Study of Unmanned Aerial Vehicle Path Planning using Reinforcement Learning

  • Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • 제17권1호
    • /
    • pp.88-92
    • /
    • 2018
  • Currently drone industry has become one of the fast growing markets and the technology for unmanned aerial vehicles are expected to continue to develop at a rapid rate. Especially small unmanned aerial vehicle systems have been designed and utilized for the various field with their own specific purposes. In these fields the path planning problem to find the shortest path between two oriented points is important. In this paper we introduce a path planning strategy for an autonomous flight of unmanned aerial vehicles through reinforcement learning with self-positioning technique. We perform Q-learning algorithm, a kind of reinforcement learning algorithm. At the same time, multi sensors of acceleraion sensor, gyro sensor, and magnetic are used to estimate the position. For the functional evaluation, the proposed method was simulated with virtual UAV environment and visualized the results. The flight history was based on a PX4 based drones system equipped with a smartphone.

Development of a Multi-criteria Pedestrian Pathfinding Algorithm by Perceptron Learning

  • Yu, Kyeonah;Lee, Chojung;Cho, Inyoung
    • Journal of the Korea Society of Computer and Information
    • /
    • 제22권12호
    • /
    • pp.49-54
    • /
    • 2017
  • Pathfinding for pedestrians provided by various navigation programs is based on a shortest path search algorithm. There is no big difference in their guide results, which makes the path quality more important. Multiple criteria should be included in the search cost to calculate the path quality, which is called a multi-criteria pathfinding. In this paper we propose a user adaptive pathfinding algorithm in which the cost function for a multi-criteria pathfinding is defined as a weighted sum of multiple criteria and the weights are learned automatically by Perceptron learning. Weight learning is implemented in two ways: short-term weight learning that reflects weight changes in real time as the user moves and long-term weight learning that updates the weights by the average value of the entire path after completing the movement. We use the weight update method with momentum for long-term weight learning, so that learning speed is improved and the learned weight can be stabilized. The proposed method is implemented as an app and is applied to various movement situations. The results show that customized pathfinding based on user preference can be obtained.

RL-based Path Planning for SLAM Uncertainty Minimization in Urban Mapping (도시환경 매핑 시 SLAM 불확실성 최소화를 위한 강화 학습 기반 경로 계획법)

  • Cho, Younghun;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • 제16권2호
    • /
    • pp.122-129
    • /
    • 2021
  • For the Simultaneous Localization and Mapping (SLAM) problem, a different path results in different SLAM results. Usually, SLAM follows a trail of input data. Active SLAM, which determines where to sense for the next step, can suggest a better path for a better SLAM result during the data acquisition step. In this paper, we will use reinforcement learning to find where to perceive. By assigning entire target area coverage to a goal and uncertainty as a negative reward, the reinforcement learning network finds an optimal path to minimize trajectory uncertainty and maximize map coverage. However, most active SLAM researches are performed in indoor or aerial environments where robots can move in every direction. In the urban environment, vehicles only can move following road structure and traffic rules. Graph structure can efficiently express road environment, considering crossroads and streets as nodes and edges, respectively. In this paper, we propose a novel method to find optimal SLAM path using graph structure and reinforcement learning technique.

Goal-Directed Reinforcement Learning System (목표지향적 강화학습 시스템)

  • Lee, Chang-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제10권5호
    • /
    • pp.265-270
    • /
    • 2010
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like TD-learning and TD(${\lambda}$)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present GDRLS algorithm for finding the shortest path faster in a maze environment. GDRLS is select the candidate states that can guide the shortest path in maze environment, and learn only the candidate states to find the shortest path. Through experiments, we can see that GDRLS can search the shortest path faster than TD-learning and TD(${\lambda}$)-learning in maze environment.

Reinforcement Learning Using State Space Compression (상태 공간 압축을 이용한 강화학습)

  • Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • 제6권3호
    • /
    • pp.633-640
    • /
    • 1999
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like Q-learning and TD(Temporal Difference)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present COMREL(COMpressed REinforcement Learning) algorithm for finding the shortest path fast in a maze environment, select the candidate states that can guide the shortest path in compressed maze environment, and learn only the candidate states to find the shortest path. After comparing COMREL algorithm with the already existing Q-learning and Priortized Sweeping algorithm, we could see that the learning time shortened very much.

  • PDF