• 제목/요약/키워드: Derivative operator

검색결과 117건 처리시간 0.029초

POLYNOMIALLY DEMICOMPACT OPERATORS AND SPECTRAL THEORY FOR OPERATOR MATRICES INVOLVING DEMICOMPACTNESS CLASSES

  • Brahim, Fatma Ben;Jeribi, Aref;Krichen, Bilel
    • 대한수학회보
    • /
    • 제55권5호
    • /
    • pp.1351-1370
    • /
    • 2018
  • In the first part of this paper we show that, under some conditions, a polynomially demicompact operator can be demicompact. An example involving the Caputo fractional derivative of order ${\alpha}$ is provided. Furthermore, we give a refinement of the left and the right Weyl essential spectra of a closed linear operator involving the class of demicompact ones. In the second part of this work we provide some sufficient conditions on the inputs of a closable block operator matrix, with domain consisting of vectors which satisfy certain conditions, to ensure the demicompactness of its closure. Moreover, we apply the obtained results to determine the essential spectra of this operator.

INCLUSION PROPERTIES OF A CLASS OF FUNCTIONS INVOLVING THE DZIOK-SRIVASTAVA OPERATOR

  • Devi, Satwanti;Srivastava, H.M.;Swaminathan, A.
    • Korean Journal of Mathematics
    • /
    • 제24권2호
    • /
    • pp.139-168
    • /
    • 2016
  • In this work, we rst introduce a class of analytic functions involving the Dziok-Srivastava linear operator that generalizes the class of uniformly starlike functions with respect to symmetric points. We then establish the closure of certain well-known integral transforms under this analytic function class. This behaviour leads to various radius results for these integral transforms. Some of the interesting consequences of these results are outlined. Further, the lower bounds for the ratio between the functions f(z) in the class under discussion, their partial sums $f_m(z)$ and the corresponding derivative functions f'(z) and $f^{\prime}_m(z)$ are determined by using the coecient estimates.

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

효율적인 광학 영상 정합을 위한 에지 선택 알고리즘 (The Edge Selection Algorithm for Efficient Optical Image Matching)

  • 양한진;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.264-268
    • /
    • 2010
  • The purpose of this paper is to propose new techniques to match measured optical images by using the edge abstraction method and differentiation method based on image processing technology. To do this, we detect the matching template and non-matching template from each optical image. And then, we detect the edge parts of the overlaped image from comer edge abstraction method and remove noise image. At last, these data are related to applied first-order derivative operator. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Coefficient Estimates for a Subclass of Bi-univalent Functions Associated with Symmetric q-derivative Operator by Means of the Gegenbauer Polynomials

  • Amourah, Ala;Frasin, Basem Aref;Al-Hawary, Tariq
    • Kyungpook Mathematical Journal
    • /
    • 제62권2호
    • /
    • pp.257-269
    • /
    • 2022
  • In the present paper, a subclass of analytic and bi-univalent functions is defined using a symmetric q-derivative operator by means of Gegenbauer polynomials. Coefficients bounds for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szegö problem for this subclass is solved. A number of known or new results are shown to follow upon specializing the parameters involved in our main results.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

LOCAL CONVERGENCE OF NEWTON'S METHOD FOR PERTURBED GENERALIZED EQUATIONS

  • Argyros Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.261-267
    • /
    • 2006
  • A local convergence analysis of Newton's method for perturbed generalized equations is provided in a Banach space setting. Using center Lipschitzian conditions which are actually needed instead of Lipschitzian hypotheses on the $Fr\'{e}chet$-derivative of the operator involved and more precise estimates under less computational cost we provide a finer convergence analysis of Newton's method than before [5]-[7].

  • PDF

CONCERNING THE RADIUS OF CONVERGENCE OF NEWTON'S METHOD AND APPLICATIONS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • 제6권3호
    • /
    • pp.685-696
    • /
    • 1999
  • We present local and semilocal convergence results for New-ton's method in a Banach space setting. In particular using Lipschitz-type assumptions on the second Frechet-derivative we find results con-cerning the radius of convergence of Newton's method. Such results are useful in the context of predictor-corrector continuation procedures. Finally we provide numerical examples to show that our results can ap-ply where earlier ones using Lipschitz assumption on the first Frechet-derivative fail.

A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION TRANSFORMABLE TO LINEAR EQUATIONS USING (p, q)-DERIVATIVE

  • ROH, KUM-HWAN;LEE, HUI YOUNG;KIM, YOUNG ROK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we introduce various first order (p, q)-difference equations. We investigate solutions to equations which are linear (p, q)-difference equations and nonlinear (p, q)-difference equations. We also find some properties of (p, q)-calculus, exponential functions, and inverse function.