Acknowledgement
The authors would like to thank the referees for their helpful comments and suggestions.
References
- I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Afr. Mat., 30(3-4)(2019), 495-503. https://doi.org/10.1007/s13370-019-00662-7
- H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014(2014), 6pp.
- S. Altinkaya and S. Yal,cin, Estimates on coefficients of a general subclass of biunivalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials, Asia Pac. J. Math., 4(2)(2017), 90-99.
- A. Amourah, B. A. Frasin and T. Abdeljawad, Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces, 2021, 7 pp.
- A. Amourah, B. Frasin and G. Murugusundaramoorthy and T. Hawary, Bi-Bazilevic functions of order ϑ + iδ associated with (p, q)-Lucas polynomials, AIMS Mathematics, 6(5)(2021), 4296-4305. https://doi.org/10.3934/math.2021254
- A. Amourah, T. Al-Hawary and B. Frasin, Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order α+iβ, Afr. Mat., 32(2021), 1059-1066. https://doi.org/10.1007/s13370-021-00881-x
- H. Bateman, Higher Transcendental Functions, McGraw-Hill(1953).
- K. L. Brahim and Y. Sidomou, On some symmetric q-special functions, Matematiche(Catania), 68(2)(2013),107-122.
- D. A. Brannan and J. G. Clunie, Aspects of contemporary complex analysis , Academic Press, New York and London(1980).
- D. A. Brannan, and T. S. Taha, On some classes of bi-univalent functions, KFAS Proc. Ser., 3, Pergamon, Oxford(1988).
- B. Doman, The classical orthogonal polynomials, World Scientific(2015).
- M. Fekete and G. Szego, Eine Bemerkung Aber ungerade schlichte Funktionen, J. London Math. Soc., 1(2)(1933), 85-89. https://doi.org/10.1112/jlms/s1-2.2.85
- B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
- G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, MA(1990).
- F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1908), 253-281. https://doi.org/10.1017/S0080456800002751
- S. Kanas and D. Raducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014), 1183-1196. https://doi.org/10.2478/s12175-014-0268-9
- K. Kiepiela, I. Naraniecka and J. Szynal, The Gegenbauer polynomials and typically real functions, J. Comput. Appl. Math., 153(1-2)(2003), 273-282. https://doi.org/10.1016/S0377-0427(02)00642-8
- A. Legendre, Recherches sur laattraction des spheroides homogenes, Universittsbibliothek Johann Christian Senckenberg, 10(1785), 411-434.
- M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
- A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65(4)(2013), 454-465.
- G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., 2013, Art. ID 573017, 3 pp.
- E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |ξ| < 1, Arch. Rational Mech. Anal., 32(1969), 100-112. https://doi.org/10.1007/BF00247676
- C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen(1975).
- C. Ramachandran, T. Soupramanien and B. A. Frasin,New subclasses of analytic function associated with q-difference operator, Eur. J. Pure Appl. Math., 10(2)(2017), 348-362.
- M. Reimer, Multivariate polynomial approximation, Birkh Auser(2012).
- T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10(1)(2016), 135-145.
- H. M. Srivastava, , A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
- H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A., 44(3)(2020), 327-344. https://doi.org/10.1007/s40995-019-00815-0
- T. S. Taha, Topics in Univalent Function Theory, Ph. D. Thesis, University of London(1981).
- F. Yousef, S. Alroud and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Bol. Soc. Mat. Mex.(3), 26(2)(2020), 329-339. https://doi.org/10.1007/s40590-019-00245-3
- F. Yousef, B. A. Frasin and T. Al-Hawary, Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32(9)(2018), 3229-3236. https://doi.org/10.2298/fil1809229y