DOI QR코드

DOI QR Code

A New Geometric Constant in Banach Spaces Related to the Isosceles Orthogonality

  • Yang, Zhijian (Department of Mathematics, Sun Yat-sen University) ;
  • Li, Yongjin (Department of Mathematics, Sun Yat-sen University)
  • Received : 2022.02.25
  • Accepted : 2022.04.18
  • Published : 2022.06.30

Abstract

In this paper, starting with the geometric constants that can characterize Hilbert spaces, combined with the isosceles orthogonality of Banach spaces, the orthogonal geometric constant ΩX(α) is defined, and some theorems on the geometric properties of Banach spaces are derived. Firstly, this paper reviews the research progress of orthogonal geometric constants in recent years. Then, this paper explores the basic properties of the new geometric constants and their relationship with conventional geometric constants, and deduces the identity of ΩX(α) and γX(α). Finally, according to the identities, the relationship between these the new orthogonal geometric constant and the geometric properties of Banach Spaces (such as uniformly non-squareness, smoothness, convexity, normal structure, etc.) is studied, and some necessary and sufficient conditions are obtained.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of P. R. China (Nos. 11971493 and 12071491).

References

  1. M. Brodskii and D. Milman, On the center of a convex set, Doklady Akad. Nauk SSSR (N.S.), 59(1948), 837-840.
  2. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1(1935), 169-172. https://doi.org/10.1215/S0012-7094-35-00115-6
  3. C. Bentez, and M. del Rio, Characterization of inner product spaces through rectangle and square inequalities, Rev. Roumaine Math. Pures Appl., 29(1984), 543-546.
  4. V. Balestro, Angles in normed spaces, Aequat. Math., 91(2017), 201-236. https://doi.org/10.1007/s00010-016-0445-8
  5. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40(1936), 396-414. https://doi.org/10.1090/S0002-9947-1936-1501880-4
  6. J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math., 38(1937), 114-115. https://doi.org/10.2307/1968512
  7. Y .Cui, Some properties concerning Milman's moduli, J. Math. Anal. Appl., 329(2007), 1260-1272. https://doi.org/10.1016/j.jmaa.2006.07.046
  8. M. M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math., 45(1944), 375-385. https://doi.org/10.2307/1969275
  9. S. Dhompongsa, A. Kaewkhao and S. Tasena, On a generalized James constant, J. Math. Anal. Appl., 285(2003), 419-435. https://doi.org/10.1016/S0022-247X(03)00408-6
  10. K. Goebel, Convexity of balls and fixed point theorems for mapping with nonexpansive square, Compositio Math., 22(1970), 269-274.
  11. J. Gao and K. S. Lau, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc. Ser. A, 48(1990), 101-112. https://doi.org/10.1017/S1446788700035230
  12. C. Hao and S. Wu, Homogeneity of isosceles orthogonality and related inequalities, J. Inequal. Appl., 84(2011), 9pp.
  13. R. C. James, Uniformly non-square Banach spaces, Ann. of Math., 80(1964), 542-550. https://doi.org/10.2307/1970663
  14. R. C. James, Orthogonality in normed linear spaces, Duke Math. J., 12(1945), 291-302. https://doi.org/10.1215/S0012-7094-45-01223-3
  15. D. Ji and S. Wu, Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality, J. Math. Anal. Appl., 323(2006), 1-7. https://doi.org/10.1016/j.jmaa.2005.10.004
  16. P. Jordan and J. Von Neumann, On inner products in linear metric spaces,. Ann. Math. J., 36(1935), 719-723. https://doi.org/10.2307/1968653
  17. J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J., 10(1963), 241-252. https://doi.org/10.1307/mmj/1028998906
  18. H. Mizuguchi, The constants to measure the differences between Birkhoff and isosceles orthogonalities, Filomat, 30(2015), 2761-2770. https://doi.org/10.2298/FIL1610761M
  19. P. L. Papini and S. Wu, Measurements of differences between orthogonality types, J. Math. Anal. Appl., 397(2013), 285-291. https://doi.org/10.1016/j.jmaa.2012.07.059
  20. L. Qi and Y. Zhijian, New geometric constants of isosceles orthogonal type. e-print arXiv: 2111.08392.
  21. B. D. Roberts, On the geometry of abstract vector spaces, Tohoku Math, 39(1934), 42-59.
  22. Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly nonsquare Banach spaces, Nihonkai Math. J., 9(1998), 155-169.
  23. Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach space, J. Math. Anal. Appl., 359(2009), 602-609. https://doi.org/10.1016/j.jmaa.2009.05.051
  24. F. Wang and B. Pang, Some inequalities concering the James constant in Banach spaces, J. Math. Anal. Appl., 353(2009), 305-310. https://doi.org/10.1016/j.jmaa.2008.12.013
  25. C. Yang and F. Wang, On estimates of the generalized Jordan-von Neumann constant of Banach spaces, JIPAM. J. Inequal. Pure Appl. Math., 7(2006), 1-5.