Acknowledgement
This work was supported by the National Natural Science Foundation of P. R. China (Nos. 11971493 and 12071491).
References
- M. Brodskii and D. Milman, On the center of a convex set, Doklady Akad. Nauk SSSR (N.S.), 59(1948), 837-840.
- G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1(1935), 169-172. https://doi.org/10.1215/S0012-7094-35-00115-6
- C. Bentez, and M. del Rio, Characterization of inner product spaces through rectangle and square inequalities, Rev. Roumaine Math. Pures Appl., 29(1984), 543-546.
- V. Balestro, Angles in normed spaces, Aequat. Math., 91(2017), 201-236. https://doi.org/10.1007/s00010-016-0445-8
- J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40(1936), 396-414. https://doi.org/10.1090/S0002-9947-1936-1501880-4
- J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math., 38(1937), 114-115. https://doi.org/10.2307/1968512
- Y .Cui, Some properties concerning Milman's moduli, J. Math. Anal. Appl., 329(2007), 1260-1272. https://doi.org/10.1016/j.jmaa.2006.07.046
- M. M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math., 45(1944), 375-385. https://doi.org/10.2307/1969275
- S. Dhompongsa, A. Kaewkhao and S. Tasena, On a generalized James constant, J. Math. Anal. Appl., 285(2003), 419-435. https://doi.org/10.1016/S0022-247X(03)00408-6
- K. Goebel, Convexity of balls and fixed point theorems for mapping with nonexpansive square, Compositio Math., 22(1970), 269-274.
- J. Gao and K. S. Lau, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc. Ser. A, 48(1990), 101-112. https://doi.org/10.1017/S1446788700035230
- C. Hao and S. Wu, Homogeneity of isosceles orthogonality and related inequalities, J. Inequal. Appl., 84(2011), 9pp.
- R. C. James, Uniformly non-square Banach spaces, Ann. of Math., 80(1964), 542-550. https://doi.org/10.2307/1970663
- R. C. James, Orthogonality in normed linear spaces, Duke Math. J., 12(1945), 291-302. https://doi.org/10.1215/S0012-7094-45-01223-3
- D. Ji and S. Wu, Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality, J. Math. Anal. Appl., 323(2006), 1-7. https://doi.org/10.1016/j.jmaa.2005.10.004
- P. Jordan and J. Von Neumann, On inner products in linear metric spaces,. Ann. Math. J., 36(1935), 719-723. https://doi.org/10.2307/1968653
- J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J., 10(1963), 241-252. https://doi.org/10.1307/mmj/1028998906
- H. Mizuguchi, The constants to measure the differences between Birkhoff and isosceles orthogonalities, Filomat, 30(2015), 2761-2770. https://doi.org/10.2298/FIL1610761M
- P. L. Papini and S. Wu, Measurements of differences between orthogonality types, J. Math. Anal. Appl., 397(2013), 285-291. https://doi.org/10.1016/j.jmaa.2012.07.059
- L. Qi and Y. Zhijian, New geometric constants of isosceles orthogonal type. e-print arXiv: 2111.08392.
- B. D. Roberts, On the geometry of abstract vector spaces, Tohoku Math, 39(1934), 42-59.
- Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly nonsquare Banach spaces, Nihonkai Math. J., 9(1998), 155-169.
- Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach space, J. Math. Anal. Appl., 359(2009), 602-609. https://doi.org/10.1016/j.jmaa.2009.05.051
- F. Wang and B. Pang, Some inequalities concering the James constant in Banach spaces, J. Math. Anal. Appl., 353(2009), 305-310. https://doi.org/10.1016/j.jmaa.2008.12.013
- C. Yang and F. Wang, On estimates of the generalized Jordan-von Neumann constant of Banach spaces, JIPAM. J. Inequal. Pure Appl. Math., 7(2006), 1-5.