• Title/Summary/Keyword: Deposition system

Search Result 1,618, Processing Time 0.035 seconds

Reinforcement of Porous Mullite Ceramics Using Ultra Fine Mullite Precursor Powders

  • Cho, Yong-Ick;Hisao Suzuki;Hidehiro Kamiya
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.137-141
    • /
    • 1999
  • To increase the strength of high-purity porous mullite ceramics, ultra fine mullite precursor powders of about 10nm in diameter were deposited at point of contact between primary coarse mullite particles of about 60$\mu\textrm{m}$. The deposited and hetero coagulated structures of ultra fine mullite precursor powders were controlled by pH. The optimum pH condition to form a uniform deposition of mullite powders between coarse mullite particles was in the range from 7 to 8. Deposition of the ultra fine powders did not form at pH < 7 and pH > 10 irregular deposition was observed from pH 8 to 9.

  • PDF

Effects of Flow on the Chemical Vapor Deposition of Si in System SiH$_4$-H$_2$ (SiH$_4$-H$_2$계에서 유체유동이 Si의 화학증착에 미치는 영향)

  • 조성욱;이경우;조영환;윤종규
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.160-166
    • /
    • 1990
  • The effects of the variation of proedd varibles on the flow patterns and effects of the flow patterns on the deposition rate and uniformity in the Si-epitaxy CVD with SiH4 as the source of Si were studied through the calculation by use of control volume method. The reslts showed that the natural convection was undesirable to the uniformity of deposition rate, whose effects were decreased with the dercrese with the decrese of the pressure in the reactoor and with the increase of the flow rate. However. the excessive increase of flow rate caused the movement of the unreacted gas to the substrate. Therefore it resulted in the non-uniform depositions. The rotation of substrate was apperared to improve the uniformity. The resulte of this study could used in CVD process to design the reator and to find the optimum conditions of the process variables.

  • PDF

Room Temperature Preparation of Poly-Si Thin Films by IBE with Substrate Bias Method

  • Cho, Byung-Yoon;Yang, Sung- Chae;Han, Byoung-Sung;Lee, Jung-Hui;Yatsui Kiyoshi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.57-62
    • /
    • 2005
  • Using intense pulsed ion beam evaporation technique, we have succeeded in the preparation of poly crystalline silicon thin films without impurities on silicon substrate. Good crystallinity and high deposition rate have been achieved without heating the substrate by using lEE. The crystallinity of poly-Si film has been improved with the high density of the ablation plasma. The intense diffraction peaks of poly-Si thin films could be obtained by using the substrate bias system. The crystallinity and the deposition rate of poly-Si thin films were increased by applying (-) bias voltage for the substrate.

Micromorph Schottky Silicon Solar Cells

  • Kim, Joon-Dong;Han, Chang-Soo;Yun, Ju-Hyung;Yi, Jun-Sin;Park, Yun-Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.130-130
    • /
    • 2010
  • Thin Si films were grown by a plasma-enhanced chemical vapor deposition (PECVD, SNTEK, Korea) system. Two different deposition condition were applied and formed a fully amorphous Si (a-Si) film and a micromorph mixing of microcrystalline Si (mc-Si) and a-Si film. Under one sun illumination, the micromorph device provided the enhanced open circuit voltage and fill factor values. It presents the fabrication of the micromorph Si film and the a-Si film by modulating a deposition condition. The performances of the Si thin film Schottky solar cells are discussed.

  • PDF

Characterization of Nano-Grained ZnO Piezoelectric Thin Films Deposited under Various Sputtering Conditions

  • Zhang, Ruirui;Lee, Eunju;Yoon, Giwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.428-430
    • /
    • 2009
  • C-axis-oriented ZnO thin films were successfully deposited on p-Si (100) in an RF magnetron sputtering system. Deposition conditions such as deposition power, working pressure, and oxygen gas ratio were varied. Crystalline structures of the deposited ZnO films were investigated by a scanning electron microscope (SEM) technique. Results show that the deposition parameters can have a strong impact on the preferred orientations and grain sizes of the deposited ZnO films.

  • PDF

Simulation of Reservoir Sediment Deposition in Low-head Dams using Artificial Neural Networks

  • Idrees, Muhammad Bilal;Sattar, Muhammad Nouman;Lee, Jin-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.159-159
    • /
    • 2019
  • In this study, the simulation of sediment deposition at Sangju weir reservoir, South Korea, was carried out using artificial neural networks. The ANNs have typically been used in water resources engineering problems for their robustness and high degree of accuracy. Three basic variables namely turbid water inflow, outflow, and water stage have been used as input variables. It was found that ANNs were able to establish valid relationship between input variables and target variable of sedimentation. The R value was 0.9806, 0.9091, and 0.8758 for training, validation, and testing phase respectively. Comparative analysis was also performed to find optimum structure of ANN for sediment deposition prediction. 3-14-1 network architecture using BR algorithm outperformed all other combinations. It was concluded that ANN possess mapping capabilities for complex, non-linear phenomenon of reservoir sedimentation.

  • PDF

Prediction for Slag Mass Accumulation in the Kick Motor (킥모터 슬래그 적층량 예측)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • Slag mass deposition was required to predict accurate performance of kick motor (KM) system. Slag mass accumulation was analyzed through the aluminum oxide particle paths to predict slag mass deposition. Numerical analysis to solve both flow field and droplet accumulation was performed with Fluent 6.3 program. The effects for the acceleration and diameters of the aluminum oxide particles was analyzed, finally total slag mass accumulation was acquired. It confirmed that the slag mass deposition was agreed well with previously slag mass prediction based on KM ground test.

  • PDF

SILICON DIOXIDE FILMS FOR INTERMETAL DIELECTRIC APPLICATIONS DEPOSITED BY AN ECR HIGH DENSITY PLASMA SYSTEM

  • Denison, D.R.;Harshbarger, W.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.130-137
    • /
    • 1995
  • Deopsition of thermal quality SiO2 using a high density plasma ECR CVD process has been demonstrated to give void and seam free gap fill of high aspect ratio metallization structures with a simple oxygen-silane chemistry. This is achieved by continuous sputter etching of the film during the deposition process. A two-step process is utilized to deposit a composite layer for higher manufacturing efficiency. The first step, which has a deposition rate of approximately 0.5 $\mu$m/min., is used to provide complete gap fill between the metal lines. The second step, which has a deposition rate of up to 1.5 $\mu$m/min., is used to deposit a total thickness of 2.0$\mu$m for the intermetal dielectric film. The topography of this composite film is very compatible with subsequent chemicl mechanical polishing(CMP) planarization processing.

  • PDF

Effect of residual oxygen in a vacuum chamber on the deposition of cubic boron nitride thin film

  • Oh, Seung-Keun;Kang, Sang Do;Kim, Youngman;Park, Soon Sub
    • Journal of Ceramic Processing Research
    • /
    • v.17 no.7
    • /
    • pp.763-767
    • /
    • 2016
  • The structural characterization of cubic boron nitride (c-BN) thin films was performed using a B4C target in a radio-frequency magnetron sputtering system. The deposition processing conditions, including the substrate bias voltage, substrate temperature, and base pressure were varied. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to analyze the crystal structures and chemical binding energy of the films. For the BN film deposited at room temperature, c-BN was formed in the substrate bias voltage range of -400 V to -600 V. Less c-BN fraction was observed as the deposition temperature increased, and more c-BN fraction was observed as the base pressure increased.

Manufacturing and characterization of ECR-PECVD system (ECR-PECVD 장치의 제작과 특성)

  • 손영호;정우철;정재인;박노길;황도원;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • An ECR-PECVD system with the characteristics of high ionization rat다 ability of plasma processing in a wide pressure range and deposition at low temperature was manufactured and characterized for the deposition of thin films. The system consists of a vacuum chamber, sample stage, vacuum gauge, vacuum pump, gas injection part, vacuum sealing valve, ECR source and a control part. The control of system is carried out by the microprocessor and the ROM program. We have investigated the vacuum characteristics of ECR-PECVD system, and also have diagnosed the characteristics of ECR microwave plasma by using the Langmuir probe. From the data of system and plasma characterization, we could confirmed the stability of pressure in the vacuum chamber according to the variation of gas flow rate and the effect of ion bombardment by the negative DC self bias voltage. The plasma density was increased with the increase of gas flow rate and ECR power. On the other hand, it was decreased with the increase of horizontal radius and distance between ECR source and probe. The calculated plasma densities were in the range of 49.7\times10^{11}\sim3.7\times10^{12}\textrm{cm}^{-3}$. It is also expected that we can estimate the thickness uniformity of film fabricated by the ECR-PECVD system from the distribution of the plasma density.

  • PDF