• 제목/요약/키워드: Department Selection

검색결과 6,761건 처리시간 0.033초

방사선학과 학생들의 학과 선택, 임상실습, 학과 교육 과정과 전공 선택 만족도의 융복합형 관련성 (The Convergence Relevance of The Department of Radiology students' Selection of Department, Clinical Practice, Curriculum of Department and The Selection Satisfaction of Major)

  • 최선욱;전민철
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.121-129
    • /
    • 2018
  • 본 연구는 방사선학과 학생들의 전공 선택 만족도에 영향을 주는 요인을 파악하고 평가하였다. 방사선학과 학생 151명을 대상으로 설문 조사하여 t-test, 다중회귀분석을 실시하였다. 학과 선택 중 선호성과 현재 요인이 유의한 차이가 있었다. 임상실습에서는 실습환경, 실습지도, 실습시간과 평가, 실습 후 만족도, 취업과의 연계성이 유의한 차이가 있었다. 학과 교육 과정 요인에서는 교육 과정 구성, 교수 학습 및 평가, 지원 시설, 학제 만족, 교육 과정 만족이 유의한 차이가 있었다. 결과적으로, 학생들의 전공 선택 만족을 높이기 위한 시스템 개발과 교육의 질 향상을 위한 노력이 필요하다.

Performance Comparison of Classication Methods with the Combinations of the Imputation and Gene Selection Methods

  • Kim, Dong-Uk;Nam, Jin-Hyun;Hong, Kyung-Ha
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1103-1113
    • /
    • 2011
  • Gene expression data is obtained through many stages of an experiment and errors produced during the process may cause missing values. Due to the distinctness of the data so called 'small n large p', genes have to be selected for statistical analysis, like classification analysis. For this reason, imputation and gene selection are important in a microarray data analysis. In the literature, imputation, gene selection and classification analysis have been studied respectively. However, imputation, gene selection and classification analysis are sequential processing. For this aspect, we compare the performance of classification methods after imputation and gene selection methods are applied to microarray data. Numerical simulations are carried out to evaluate the classification methods that use various combinations of the imputation and gene selection methods.

An application of BP-Artificial Neural Networks for factory location selection;case study of a Korean factory

  • Hou, Liyao;Suh, Eui-Ho
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.351-356
    • /
    • 2007
  • Factory location selection is very important to the success of operation of the whole supply chain, but few effective solutions exist to deliver a good result, motivated by this, this paper tries to introduce a new factory location selection methodology by employing the artificial neural networks technology. First, we reviewed previous research related to factory location selection problems, and then developed a (neural network-based factory selection model) NNFSM which adopted back-propagation neural network theory, next, we developed computer program using C++ to demonstrate our proposed model. then we did case study by choosing a Korean steelmaking company P to show how our proposed model works,. Finnaly, we concluded by highlighting the key contributions of this paper and pointing out the limitations and future research directions of this paper. Compared to other traditional factory location selection methods, our proposed model is time-saving; more efficient.and can produce a much better result.

  • PDF

Use of Artificial Bee Swarm Optimization (ABSO) for Feature Selection in System Diagnosis for Coronary Heart Disease

  • Wiharto;Yaumi A. Z. A. Fajri;Esti Suryani;Sigit Setyawan
    • Journal of information and communication convergence engineering
    • /
    • 제21권2호
    • /
    • pp.130-138
    • /
    • 2023
  • The selection of the correct examination variables for diagnosing heart disease provides many benefits, including faster diagnosis and lower cost of examination. The selection of inspection variables can be performed by referring to the data of previous examination results so that future investigations can be carried out by referring to these selected variables. This paper proposes a model for selecting examination variables using an Artificial Bee Swarm Optimization method by considering the variables of accuracy and cost of inspection. The proposed feature selection model was evaluated using the performance parameters of accuracy, area under curve (AUC), number of variables, and inspection cost. The test results show that the proposed model can produce 24 examination variables and provide 95.16% accuracy and 97.61% AUC. These results indicate a significant decrease in the number of inspection variables and inspection costs while maintaining performance in the excellent category.

Coordinated Millimeter Wave Beam Selection Using Fingerprint for Cellular-Connected Unmanned Aerial Vehicle

  • Moon, Sangmi;Kim, Hyeonsung;You, Young-Hwan;Kim, Cheol Hong;Hwang, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1929-1943
    • /
    • 2021
  • Millimeter wave (mmWave) communication based on the wide bandwidth of >28 GHz is one of the key technologies for cellular-connected unmanned aerial vehicles (UAVs). The selection of mmWave beams in such cellular-connected UAVs is challenging and critical, especially when downlink transmissions toward aerial user equipment (UE) suffer from poor signal-to-interference-plus-noise ratio (SINR) more often than their terrestrial counterparts. This study proposed a coordinated mmWave beam selection scheme using fingerprint for cellular-connected UAV. The scheme comprises fingerprint database configuration and coordinated beam selection. In the fingerprint database configuration, the best beam index from the serving cell and interference beam indexes from neighboring cells are stored. In the coordinated beam selection, the best and interference beams are determined using the fingerprint database information instead of performing an exhaustive search, and the coordinated beam transmission improves the SINR for aerial UEs. System-level simulations assess the UAV effect based on the third-generation partnership project-new radio mmWave and UAV channel models. Simulation results show that the proposed scheme can reduce the overhead of exhaustive search and improve the SINR and spectral efficiency.

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

전문병원 충성고객의 병원 선택에 영향을 미치는 요인 (Factors Influencing on Selection of Specialty Hospital among Inpatients with Loyalty)

  • 김복미;함명일;민인순;김선정
    • 한국병원경영학회지
    • /
    • 제23권4호
    • /
    • pp.1-14
    • /
    • 2018
  • Purpose : Customers with loyalty are very important to hospitals for sustainable growth in their medical market. Individuals with loyalty are likely to visit same hospital repeatedly when they need medical services. This study was to identify factors associated with selection of specialty hospitals among customers with loyalty. Methods : The subjects of this study were 735 inpatients in 22 specialty hospitals in 6 designated fields(joints, spine, colorectal-anal, obstetrics and gynecology, ophthalmology, otolaryngology). Customer types classified as customers with high loyalty, neutral customers, and customers with low loyalty according to net promoter score(NPS). Factor analysis was conducted to classify 22 hospital selection factors into some similar properties. Logistic regression analysis was conducted to confirm the selection factors related to loyal customers. Findings : Most of specialty hospitals received high NPS of 8 points or higher in all the designated fields. Five factors associated with selection of specialty hospital are (1) hospital facilities and convenience, (2) trust in doctor and hospital, (3) rapidness of treatment, (4) hospital awareness, and (5) accessibility. As a result of logistic regression analysis, selection factors related to loyal customers were 'hospital facilities and convenience', 'trust in doctor and hospital' and 'rapidness of treatment'. Differences in the degree of importance of three selection factors by customer types appeared for each designated field. Practical Implications : This study confirms the high level of patient experience among inpatients of specialty hospitals. Factors associated with selection of hospital among inpatients with loyalty are 'facilities and convenience of hospitals', 'trust of doctor and hospital' and 'rapidness of treatment'. This study will be meaningful as basic data to systematically enhance the roles and functions of the health care system and to provide securing competitiveness according to designated fields in the management aspect of specialty hospitals.

Genomic Selection for Adjacent Genetic Markers of Yorkshire Pigs Using Regularized Regression Approaches

  • Park, Minsu;Kim, Tae-Hun;Cho, Eun-Seok;Kim, Heebal;Oh, Hee-Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1678-1683
    • /
    • 2014
  • This study considers a problem of genomic selection (GS) for adjacent genetic markers of Yorkshire pigs which are typically correlated. The GS has been widely used to efficiently estimate target variables such as molecular breeding values using markers across the entire genome. Recently, GS has been applied to animals as well as plants, especially to pigs. For efficient selection of variables with specific traits in pig breeding, it is required that any such variable selection retains some properties: i) it produces a simple model by identifying insignificant variables; ii) it improves the accuracy of the prediction of future data; and iii) it is feasible to handle high-dimensional data in which the number of variables is larger than the number of observations. In this paper, we applied several variable selection methods including least absolute shrinkage and selection operator (LASSO), fused LASSO and elastic net to data with 47K single nucleotide polymorphisms and litter size for 519 observed sows. Based on experiments, we observed that the fused LASSO outperforms other approaches.

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • 제17권3호
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.

A Die-Selection Method Using Search-Space Conditions for Yield Enhancement in 3D Memory

  • Lee, Joo-Hwan;Park, Ki-Hyun;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.904-913
    • /
    • 2011
  • Three-dimensional (3D) memories using through-silicon vias (TSVs) as vertical buses across memory layers will likely be the first commercial application of 3D integrated circuit technology. The memory dies to stack together in a 3D memory are selected by a die-selection method. The conventional die-selection methods do not result in a high-enough yields of 3D memories because 3D memories are typically composed of known-good-dies (KGDs), which are repaired using self-contained redundancies. In 3D memory, redundancy sharing between neighboring vertical memory dies using TSVs is an effective strategy for yield enhancement. With the redundancy sharing strategy, a known-bad-die (KBD) possibly becomes a KGD after bonding. In this paper, we propose a novel die-selection method using KBDs as well as KGDs for yield enhancement in 3D memory. The proposed die-selection method uses three search-space conditions, which can reduce the search space for selecting memory dies to manufacture 3D memories. Simulation results show that the proposed die-selection method can significantly improve the yield of 3D memories in various fault distributions.