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INTRODUCTION 

 

Genomic selection (GS) has been substantially 

developed in the last few years (Usai et al., 2009; Ogutu et 

al., 2012), which estimates the total genetic value for 

animals utilizing the genomic information of a dense 

marker map covering all the chromosomes (Meuwissen et 

al., 2001). In practice, GS has been applied in an attempt to 

increase the accuracy of breeding values in various fields 

such as crop and livestock breeding (Ibañez-Escriche and 

Gonzalez-Recio, 2011; Ogutu et al., 2012; Würschum et al., 

2013). For pig breeding, the different implementations of 

GS have been conducted to increase in accuracy of the 

breeding values (Simianer, 2009; Cleveland et al., 2010; 

Lillehammer et al., 2013). As interest in GS increased, the 

computational cost and the prediction accuracy of GS 

become important issues especially when the data are high-

dimensional, i.e., the number of variables is larger than the 

number of observations.  

Previously genome-wide association studies that utilize 

individual genes or a few quantitative trait loci (QTL) were 

popular (Meuwissen et al., 2001; Dekkers, 2002). However, 

it has a limitation in that it cannot reflect the effects of the 

neighborhood variables. In fact, the single nucleotide 

polymorphisms (SNPs) are ordered by physical locations on 

the chromosomes, therefore, adjacent SNPs are correlated 

with similar associations (Liu, 2011).  

The main objective of this study is to provide significant 

SNPs that affect the average litter size of Yorkshire pigs 

using regularized regression approaches and to predict the 

litter values with selected SNPs in the final model. To 

accommodate the above property of SNPs properly, we 

consider some regularized regression approaches: least 

absolute shrinkage and selection operator (LASSO) 

(Tibshirani, 1996), fused LASSO (Tibshirani et al., 2005), 

and elastic net (Zou and Hastie, 2005). It is well known that 

these methods identify significant variables efficiently, 

improve the accuracy of the prediction and handle high-
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dimensional data simultaneously.  

In fact, Ogutu et al. (2012) performed gnomic selection 

using some regularized regression methods. However, there 

are some key features that distinguish this study from Ogutu 

et al. (2012). First, in this study, we have analyzed 

ultrahigh-dimensional data that contain 519 sows with 

47,112 SNPs, while Ogutu et al. (2012) considered a dataset 

that has 3,000 observations with 9,990 SNPs. It is well 

known that the performance of regularized regressions 

varies over the degree of dimensionality. Thus, this study 

can be considered as an extension of high-dimensional case 

of Ogutu et al. (2012). Second, an important issue of 

regularized regressions is their implementation when the 

data are high-dimensional, because it heavily involves 

solving optimization. To handle such ultrahigh-dimensional 

data, we have used three regularized regression methods 

with efficient algorithms introduced by Liu et al. (2010); 

and hence, many researchers can easily implement the 

methods for GS with various high-dimensional data. Finally, 

we have focused on the fussed LASSO. It is designed for a 

problem with features that can be ordered in some 

meaningful ways as well as a dataset where the number of 

features is much greater than the sample size. The 

abovementioned issues can be considered as main 

contributions of this study.  

 

MATERIALS AND METHODS 

 

The Rural Development Administration (RDA) 

provided the Illumina Porcine 60K SNP Beadchip on 703 

sows and their litter size. Since this study is focused on the 

litter values of pigs, multiparous sows were used in the 

analyses. In this section, we explain the details of data in 

the analysis and the methods used for analysis. 

 

Data 

The original genotype data consisted of 60K SNP 

markers of 703 sows. Samples were excluded if they had a 

missing genotype rate (>0.05) per sample, and genotype 

data were also removed if they had low minor allele 

frequency (<0.01) or significant deviation from the Hardy-

Weinberg equilibrium (p<0.0001) as determined by the 

Plink whole genome analysis toolset (Purcell et al., 2007). 

A quality control was performed when each SNP was 

recoded as having a value of 0, 1, or 2 for analysis. 

There are several phenotype traits that genetically 

superior animals hold such as litter size by parity, gestation 

length, and number born alive. We considered the average 

litter size for sows as the response variable and the Illumina 

Porcine 60K SNPs as the independent variables. Although 

litter size is a trait with low heritability in pigs, it seems that, 

in our dataset, the litter size is the only response variable 

that could be used in regression models without imputation 

of feature variables (SNPs) and removing lots of pigs. The 

choice of response variable is not main issue of this study. 

As mentioned earlier, the main purpose of the paper is to 

compare the performance of three regularized regressions 

and to extract the influence SNPs for a particular trait when 

the data are ultrahigh-dimensional; and hence, it is feasible 

to use other traits that represent the productivity of pigs 

when such data are available. 

Litter size by parity in pigs is defined as the number of 

piglets born at a time and the parity of observed litter size in 

this data set ranges from 1 to 12. The observed objects per 

parity among a total of 4,163 pigs are described in Figure 1. 

The more the parity increases, the fewer objects there are 

(Figure 1). As shown in Figure 2, litter size per parity is 

almost identical as proved using the Tukey's honestly 

significant difference test. Therefore, in this analysis, we 

consider the average litter size for each sample matched 

with the objects of SNP marker information. The average 

values of litter size that can be addressed via the response 

variable must satisfy the Gaussianity assumption. To 

comply with this assumption, we used the Box-Cox 

transformation which chooses an optimal transformation to 

rectify deviations from the assumption. Figure 3 shows the 

empirical distribution of the transformed variable that 

satisfies the Gaussianity assumption. The Shapiro-Wilk 

normality test (Royston, 1982) gave a p-value of 0.3 with 

Shapiro-Wilk statistics of 0.9856. It implies that we cannot 

reject the Gaussianity assumption at the 0.05 significance 

level. 

After phenotype and genotype realignment, the data set 

consists of 47,112 SNPs out of a total of 61,177 SNPs 

markers and 519 sows qualified for GS. 
 

 

Figure 1. Observed sows per parity. The range of parity has from 

1 to 12 and initial distinct observations having litter size values are 

4,163 Yorkshire sows. 
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Methods 

 The linear model for the genetic effects at adjacent 

SNPs is 

 

y = Xβ+ε 

 

where y is an n×1 vector of observed average litter size, 

X is an n×p matrix of genotypes, and β is a p×1 vector of 

the regression coefficients of the SNP markers. Here, ε is an 

n×1 vector of the i.i.d. random errors with ε~N(0,I 2

 ), 

where 2

  denotes a constant variance.  

LASSO (Tibshirani, 1996): LASSO has been widely 

used for variable selection. It is used to find regression 

coefficients β that minimizes the usual sum of squared 

errors with a constraint on the sum of the absolute values of 

the coefficients as follows  
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where the penalty function is 
1
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P    with a 

regularization parameter λ≥0. Although LASSO is efficient 

and has a fast algorithm, it tends to arbitrarily select only 

one variable from the group when adjacent SNPs have 

pairwise high correlations, which may not be suitable for 

our analysis.  

Fused LASSO (Tibshirani et al., 2005): Fused LASSO is 

designed for a proper group selection that may be suitable 

for this study. The fused LASSO is defined as  
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As shown in the above criterion, the fused LASSO 

requires a natural ordering of the independent variables for 

 

Figure 2. Boxplot of litter size per parity. Boxplot depicts the 

distribution of the sows per parity through their quartiles. The 

black line in box represents the second quantile (median) of litter 

size and the upper and lower boundary of box means third quantile 

and first quantile, respectively. 

 

Figure 3. Identification of the Gaussian assumption. The empirical distribution of transformed average litter size by the Box-Cox 

transformation (left) and the normal Q-Q plot comparing randomly generated by independent normal data to the standard normal 

population (right). 
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integrating correlated variables well. The physical ordering 

of SNP markers across a chromosome is simply satisfied. 

Elastic net (Zou and Hastie, 2005): Elastic net is a 

regularized regression method that can be considered as an 

extension of LASSO. The penalty of elastic net consists of 

l1 and l2 parts, which means that it is a mixture of LASSO 

and ridge regression penalties. The quadratic penalty part 

captures the group of highly correlated variables, and hence, 

it overcomes a limitation of LASSO. The elastic net 

estimator can be expressed as 

 

.X-ymin arg)EN(ˆ
2

2211
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Letting α = λ2/(λ1+λ2), the estimator is equivalent to the 

following optimization problem: 
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α)1(   for some t. 

 

Comparing methods 

Since the optimizations for LASSO, fused LASSO, and 

elastic net involve a non-linear procedure, finding the 

solutions is not trivial (Tibshirani and Taylor, 2011). To 

improve the speed and the accuracy of the solution paths, 

we used the efficient algorithm by Liu et al. (2010) with the 

accelerated gradient method of Nesterov (2007) and a two-

deep 10-fold cross-validation (CV) in MATLAB as follows:  
 

i) Partition the data into the first-deep training and 

validation sets; then partition the first-deep training 

set into the second-deep training and test set (two-

deep CV). 

ii) At the second-deep, construct the model using the 

sub-training set and calculate CV; then choose the 

optimal tuning parameter that minimizes CV. 

iii) At the first-deep, fit the model and estimate the 

coefficients in the first-deep training set with the 

estimated regularization parameter from the second-

deep set. 
 

To evaluate the regularized regressions described in 

Section 2, we calculated the prediction error (PE), which is 

defined as 

 

val

travalval

n

2
ˆXy

PE


  

 

where the subindex val implies the validation set, 
tra̂  

is a vector of the coefficients obtained from the first-deep 

training set and 
traval̂X  denotes a vector of the predicted 

values on the validation set. As a standard criterion for the 

performance, we consider mean fitting prediction error 

(MFPE) which replaces 
traval̂X  in the definition of PE 

with 
tray . 

 

RESULT AND DISCUSSION 

 

To compare the performance of the three methods, PE 

and the Pearson correlation between the true litter values 

and the predicted values were used as measures of the 

accuracy. The number of non-zero coefficients was also 

used as an indicator of efficiency. If the structure of the 

training set is totally different from the arrangement of the 

validation set because of the limitation of data, then the 

evaluation of the method might not be reliable. To clarify 

the comparison for the results of methods, we extracted new 

samples from the original data using the bootstrap 

technique with a 35% resampling rate. 

The overall results of each method with partitioned 

bootstrap samples are presented in Table 1 to 3. Table 1 

describes PEs by LASSO, fused LASSO, and elastic net, 

and MFPE for each fold. The average PEs obtained by 

LASSO, fused LASSO, and elastic net were 0.8675, 0.8476, 

and 0.8628, respectively. As listed, the fused LASSO 

outperformed other methods when the explanatory variables 

were correlated. From Table 2, the fused LASSO provided 

the highest accuracy over all folds. Table 3 lists the number 

of non-zero coefficients selected by LASSO, fused LASSO, 

and elastic net. Overall, the number of non-zero coefficients 

Table 1. PE1 and average PE by regularized regressions and 

MFPE2 

Fold MFPE 
Regularized regression 

LASSO Fused LASSO Elastic net 

1 1.0061 0.9673 0.9514 0.9610 

2 0.9796 0.8052 0.7777 0.7794 

3 0.8429 0.7227 0.7049 0.7210 

4 0.9595 0.8370 0.8172 0.8306 

5 1.0420 0.8282 0.8061 0.8257 

6 1.0147 0.9110 0.8885 0.9236 

7 1.0813 0.9950 0.9809 0.9918 

8 1.0241 0.8880 0.8635 0.8851 

9 1.0163 0.8972 0.8784 0.8931 

10 0.9568 0.8235 0.8074 0.8169 

Ave PE 0.9923 0.8675 0.8476 0.8628 

PE, prediction error; MFPE, mean fitting prediction error; LASSO, least 

absolute shrinkage and selection operator; Ave PE, average prediction 

error for fold. 
1 The root mean squared error with respect to fitted coefficients from the 

first-deep training set. 
2 The root mean squared error with respect to fitted mean of litter size 

from the first-deep training set. 
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by the fused LASSO was slightly high, compared to 

LASSO and elastic net. In the case of fold 4, for example, 

the consecutively selected variables by the fused LASSO 

were DRGA0005762, DRGA0005763, DRGA0005767, and  

DRGA0005770, while the LASSO selected only 

DRGA0005770. According to the results of the above 

comparison study, the fused LASSO performed well. Ogutu 

et al. (2012) analyzed a dataset with 9,900 SNP markers on 

3,000 progenies of 20 sires and 200 dams by using various 

GS methods such as ridge regression, ridge regression best 

linear unbiased prediction (BLUP), LASSO, adaptive 

LASSO, elastic net, and adaptive elastic net. In their 

analysis, elastic net and LASSO worked well for GS, 

compared to others. 

To construct the final model, we used the whole data set, 

and calculated PEs and correlation values between the given 

target variable and the predicted value to indicate accuracy. 

In the results of the final model obtained by the fused 

LASSO, the number of significant non-zero coefficients 

among 47,112 SNPs was 1,499 SNPs. Table 4 lists the 

names of the 10 selected significant SNPs with large 

estimated coefficients (in absolute value) of the SNP effects. 

Onteru et al. (2012) provided some important genes for 

reproductive traits in the QTL regions, where they 

employed the Bayes C model introduced by Kizilkaya et al. 

(2010). Figure 4 shows the scatter plot between the 

predicted values ŷ  and the original values y. Note that the 

sample correlation coefficient between litter size and 

predicted litter size by the final model was 0.7041. It seems 

Table 2. Accuracy (Pearson correlation1) and average correlation 

by regularized regression methods 

Fold 
Regularized regression 

LASSO Fused LASSO Elastic net 

1 0.3627 0.4150 0.3972 

2 0.6802 0.6978 0.6966 

3 0.6136 0.6410 0.6239 

4 0.5600 0.5848 0.5694 

5 0.7295 0.7510 0.7338 

6 0.5973 0.6265 0.6011 

7 0.4849 0.5126 0.4925 

8 0.5931 0.6070 0.5962 

9 0.5200 0.5422 0.5291 

10 0.5708 0.5891 0.5777 

Ave corr1 0.5712 0.5967 0.5818 

LASSO, least absolute shrinkage and selection operator; Ave corr, average 

Pearson correlation for fold. 
1 Pearson correlation coefficient is obtained by the true litter size vectors 

in validation set and predicted values which coefficients in the model are 

derived from training set at each fold. 

Table 3. Number of non-zero estimated coefficients derived from 

training set by regularized regression methods (total SNPs: 

47,112) 

Fold 
Regularized regression 

LASSO Fused LASSO Elastic net 

1 445 884 903 

2 850 847 678 

3 499 759 863 

4 510 514 368 

5 535 851 601 

6 553 821 869 

7 949 1,339 1,035 

8 1,056 963 1,139 

9 917 850 1,004 

10 899 1369 620 

Ave numb1 721.3 953.3 808 

LASSO, least absolute shrinkage and selection operator; Ave numb, 

average number. 

Table 4. The 10 SNPs with the highest coefficients (in absolute 

value) selected by the fused LASSO1 

Name of SNP Coef2 

M1GA0023299 0.0099 

MARC0015851 0.0094 

H3GA0002658 0.0084 

ASGA0001125 0.0074 

ALGA0106999 0.0069 

MARC0016306 0.0068 

ASGA0080059 0.0064 

ASGA0054467 –0.0063 

MARC0027886 –0.0064 

MARC0023564 –0.0064 

SNP, single nucleotide polymorphism; LASSO, least absolute shrinkage 

and selection operator. 
1 The significant SNPs in the final model are obtained from the whole data 

set using the fused LASSO. 
2 Estimated coefficient by the fused LASSO. 

 

Figure 4. Scatter plot of true average litter size and predicted litter 

size obtained by the fused LASSO in the final model. The sample 

correlation coefficient is 0.7041. LASSO, least absolute shrinkage 

and selection operator. 
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that the fused LASSO is suitable for selecting adjacent 

SNPs as well as for predicting the values. 

In summary, we have considered three regularized 

regressions for GS with 47,112 SNPs of 519 sows. We 

compared three methods using PEs and correlation 

coefficient values, and obtained the final model to predict 

the litter size of pigs. From the data analysis, we observed 

that the fused LASSO seems to be a good choice for GS.  

Finally, the regression methods for estimating the 

random effect in a mixed model have recently developed 

(Onteru et al., 2012; Resende et al., 2012). As a future study, 

it is worth confirming the effects of a random effect model 

compared to existing GS methods. 
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