• Title/Summary/Keyword: Degenerate Elliptic

Search Result 15, Processing Time 0.024 seconds

EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A CLASS OF HAMILTONIAN STRONGLY DEGENERATE ELLIPTIC SYSTEM

  • Nguyen Viet Tuan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.741-754
    • /
    • 2023
  • In this paper, we study the existence and nonexistence of solutions for a class of Hamiltonian strongly degenerate elliptic system with subcritical growth $$\left{\array{-{\Delta}_{\lambda}u-{\mu}v={\mid}v{\mid}^{p-1}v&&\text{in }{\Omega},\\-{\Delta}_{\lambda}v-{\mu}u={\mid}u{\mid}^{q-1}u&&\text{in }{\Omega},\\u=v=0&&\text{ on }{\partial}{\Omega},}$$ where p, q > 1 and Ω is a smooth bounded domain in ℝN, N ≥ 3. Here Δλ is the strongly degenerate elliptic operator. The existence of at least a nontrivial solution is obtained by variational methods while the nonexistence of positive solutions are proven by a contradiction argument.

LONG TIME BEHAVIOR OF SOLUTIONS TO SEMILINEAR HYPERBOLIC EQUATIONS INVOLVING STRONGLY DEGENERATE ELLIPTIC DIFFERENTIAL OPERATORS

  • Luyen, Duong Trong;Yen, Phung Thi Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1279-1298
    • /
    • 2021
  • The aim of this paper is to prove the existence of the global attractor of the Cauchy problem for a semilinear degenerate hyperbolic equation involving strongly degenerate elliptic differential operators. The attractor is characterized as the unstable manifold of the set of stationary points, due to the existence of a Lyapunov functional.

A Priori Boundary Estimations for an Elliptic Operator

  • Cho, Sungwon
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.273-277
    • /
    • 2014
  • In this article, we consider a singular and a degenerate elliptic operators in a divergence form. The singularities exist on a part of boundary, and comparable to the logarithmic distance function or its inverse. If we assume that the operator can be treated in a pointwise sense than distribution sense, with this operator we obtain a priori Harnack continuity near the boundary. In the proof we transform the singular elliptic operator to uniformly bounded elliptic operator with unbounded first order terms. We study this type of estimations considering a De Giorgi conjecture. In his conjecture, he proposed a certain ellipticity condition to guarantee a continuity of a solution.

A CERTAIN EXAMPLE FOR A DE GIORGI CONJECTURE

  • Cho, Sungwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-769
    • /
    • 2014
  • In this paper, we illustrate a counter example for the converse of a certain conjecture proposed by De Giorgi. De Giorgi suggested a series of conjectures, in which a certain integral condition for singularity or degeneracy of an elliptic operator is satisfied, the solutions are continuous. We construct some singular elliptic operators and solutions such that the integral condition does not hold, but the solutions are continuous.

Elliptic Linear Weingarten Surfaces

  • Kim, Young Ho
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.547-557
    • /
    • 2018
  • We establish some characterizations of isoparametric surfaces in the three-dimensional Euclidean space, which are associated with the Laplacian operator defined by the so-called II-metric on surfaces with non-degenerate second fundamental form and the elliptic linear Weingarten metric on surfaces in the three-dimensional Euclidean space. We also study a Ricci soliton associated with the elliptic linear Weingarten metric.

EXISTENCE OF POSITIVE SOLUTIONS OF PREDATOR-PREY SYSTEMS WITH DEGENERATE DIFFUSION RATES

  • Ryu, Kimun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.19-32
    • /
    • 2020
  • We discuss the coexistence of positive solutions to certain strongly-coupled predator-prey elliptic systems under the homogeneous Dirichlet boundary conditions. The sufficient condition for the existence of positive solutions is expressed in terms of the spectral property of differential operators of nonlinear Schrödinger type which reflects the influence of the domain and nonlinearity in the system. Furthermore, applying the obtained results, we investigate the sufficient conditions for the existence of positive solutions of a predator-prey system with degenerate diffusion rates.

A CHARACTERIZATION OF ELLIPTIC HYPERBOLOIDS

  • Kim, Dong-Soo;Son, Booseon
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.37-49
    • /
    • 2013
  • Consider a non-degenerate open convex cone C with vertex the origin in the $n$2-dimensional Euclidean space $E^n$. We study volume properties of strictly convex hypersurfaces in the cone C. As a result, for example, if the volume of the region of an elliptic cone C cut off by the tangent hyperplane P of M at $p$ is independent of the point $p{\in}M$, then it is shown that the hypersurface M is part of an elliptic hyperboloid.

Kato's Inequalities for Degenerate Quasilinear Elliptic Operators

  • Horiuchi, Toshio
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • Let $N{\geq}1$ and p > 1. Let ${\Omega}$ be a domain of $\mathbb{R}^N$. In this article we shall establish Kato's inequalities for quasilinear degenerate elliptic operators of the form $A_pu$ = divA(x,$\nabla$u) for $u{\in}K_p({\Omega})$, ), where $K_p({\Omega})$ is an admissible class and $A(x,\xi)\;:\;{\Omega}{\times}\mathbb{R}^N{\rightarrow}\mathbb{R}^N$ is a mapping satisfying some structural conditions. If p = 2 for example, then we have $K_2({\Omega})\;= \;\{u\;{\in}\;L_{loc}^1({\Omega})\;:\;\partial_ju,\;\partial_{j,k}^2u\;{\in}\;L_{loc}^1({\Omega})\;for\;j,k\;=\;1,2,{\cdots},N\}$. Then we shall prove that $A_p{\mid}u{\mid}\;\geq$ (sgn u) $A_pu$ and $A_pu^+\;\geq\;(sgn^+u)^{p-1}\;A_pu$ in D'(${\Omega}$) with $u\;\in\;K_p({\Omega})$. These inequalities are called Kato's inequalities provided that p = 2. The class of operators $A_p$ contains the so-called p-harmonic operators $L_p\;=\;div(\mid{{\nabla}u{\mid}^{p-2}{\nabla}u)$ for $A(x,\xi)={\mid}\xi{\mid}^{p-2}\xi$.

EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS TO A FOURTH-ORDER DEGENERATE PARABOLIC EQUATION

  • LIANG, BO;WANG, MEISHAN;WANG, YING
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1059-1068
    • /
    • 2015
  • The paper is devoted to studying a fourth-order degenerate parabolic equation, which arises in fluid, phase transformation and biology. Based on the existence and uniqueness of one semi-discrete problem, two types of approximate solutions are introduced. By establishing some necessary uniform estimates for those approximate solutions, the existence and uniqueness of the corresponding parabolic problem are obtained. Moreover, the long time asymptotic behavior is established by the entropy functional method.