• 제목/요약/키워드: Defense genes

검색결과 310건 처리시간 0.027초

Isolation of Defense-Related Genes from Nicotiana glutinosa Infected by Tobacco Mosaic Virus Using a Modified Differential Screening

  • Park, Kyung-Soon;Suh, Mi-Chung;Cheong, Jong-Joo;Park, Doil
    • The Plant Pathology Journal
    • /
    • 제15권5호
    • /
    • pp.295-301
    • /
    • 1999
  • Many of plant defense responses are consequence of transcriptional activation of related genes. We have developed a modified differential screening procedure to isolate tobacco genes that are involved in the defense responses against TMV infection. A cDNA library was constructed from Nicotiana glutinosa leaves infected by TMV under temperature shift conditions. Each of plasmid DNA in the library was hybridized on a set of slot blots to a pool of cDNA probes prepared from either TMV-infected or mock-treated tobacco leaves. Among 900 plasmid DNAs, 81 clones exhibiting significantly enhanced or reduced level of hybridization to either probe were selected for nucleotide sequencing. The clones were listed into 61 genes considering redundancy between the sequences. The genes were identified to be defense-related genes including PR-genes and genes involved in primary or secondary metabolisms. This results supports the implication that plant defense process entails a major shift in total cellular metabolisms rather than activation of a limited number of defense-related genes. Expression patterns of a number of defense-related genes. Expression patterns of a number of selected genes were examined in northern blot analyses. It is notable that the clone 630 of unknown function exhibits expression pattern similar to those of previously known PR-genes. Experiments to elucidate the roles in defense mechanism of a couple of genes newly identified in this study are in progress.

  • PDF

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF

Identification of Glycine max Genes Expressed in Response to Soybean mosaic virus Infection

  • Jeong, Rae-Dong;Lim, Won-Seok;Kwon, Sang-Wook;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제21권1호
    • /
    • pp.47-54
    • /
    • 2005
  • Identification of host genes involved in disease progresses and/or defense responses is one of the most critical steps leading to the elucidation of disease resistance mechanisms in plants. Soybean mosaic virus (SMV) is one of the most prevalent pathogen of soybean (Glycine max). Although the soybeans are placed one of many important crops, relatively little is known about defense mechanism. In order to obtain host genes involved in SMV disease progress and host defense especially for virus resistance, two different cloning strategies (DD RT-PCR and Subtractive hybridization) were employed to identify pathogenesis- and defenserelated genes (PRs and DRs) from susceptible (Geumjeong 1) and resistant (Geumjeong 2) cultivars against SMV strain G7H. Using these approaches, we obtained 570 genes that expressed differentially during SMV infection processes. Based upon sequence analyses, differentially expressed host genes were classified into five groups, i.e. metabolism, genetic information processing, environmental information processing, cellular processes and unclassified group. A total of 11 differentially expressed genes including protein kinase, transcription factor, other potential signaling components and resistant-like gene involved in host defense response were selected to further characterize and determine expression profiles of each selected gene. Functional characterization of these genes will likely facilitate the elucidation of defense signal transduction and biological function in SMV-infected soybean plants.

Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato

  • Sahin-Cevik, Mehtap;Sivri, Emine Dogus;Cevik, Bayram
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.257-273
    • /
    • 2019
  • Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.

The role of defense-related genes and oxidative burst in the establishment of systemic acquired resistance to Xanthomonas campestris pv. vesicatoria in Capsicum annuum(oral)

  • Lee, S.C.;B.K. Hwang
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.64.1-64
    • /
    • 2003
  • Inoculation of primary pepper leaves with an avirulent strain of Xanthomonas campestris pv. vesicatoria induced systemic acquired resistance (SAR) in secondary leaves. This SAR response was accompanied by the systemic expression of defense-related genes, a systemic microoxidative burst generating H2O2, and the systemic induction of ion-leakage and callose deposition in the non-inoculated, secondary leaves. Some defense-related genes encoding PR-1, chitinase, peroxidase, PR10, thionin, defensin and zinc-finger protein were distiilctly induced in the systemic leaves. The systemically striking accumulation of H$_2$O$_2$and strong increase in peroxidase activity in pepper was suggested to contribute to the triggering of cell death In the systemic micro-HRs, leading to the induction of SAR. Treatment of non-inoculated, secondary leaves with diphenylene iodinium (DPI), an inhibitor of the oxidative burst, substantially reduced the induction of some defense-related genes and subsequently SAR.

  • PDF

Priming of Defense-Related Genes Confers Root-Colonizing Bacilli-Elicited Induced Systemic Resistance in Pepper

  • Yang, Jung-Wook;Yu, Seung-Hun;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.389-399
    • /
    • 2009
  • A group of beneficial plant bacteria has been shown to increase crop growth referring to as plant growth-promoting rhizobacteria (PGPR). PGPR can decrease plant disease directly, through the production of antagonistic compounds, and indirectly, through the elicitation of a plant defense response termed induced systemic resistance (ISR). While the mechanism of PGPR-elicited ISR has been studied extensively in the model plant Arabidopsis, it is less well characterized in crop plants such as pepper. In an effort to better understand the mechanism of ISR in crop plants, we investigated the induction of ISR by Bacillus cereus strain BS107 against Xanthomonas axonopodis pv. vesicatoria in pepper leaves. We focused on the priming effect of B. cereus strain BS107 on plant defense genes as an ISR mechanism. Of ten known pepper defense genes that were previously reported to be involved in pathogen defense signaling, the expression of Capsicum annum pathogenesis-protein 4 and CaPR1 was systemically primed by the application of strain BS107 onto pepper roots confirming by quantitative-reverse transcriptase PCR. Our results provide novel genetic evidence of the priming effect of a rhizobacterium on the expression of pepper defense genes involved in ISR.

Genome-wide analysis of heterosis-related genes in non-heading Chinese cabbage

  • Yi, Hankuil;Lee, Jeongyeo;Song, Hayong;Dong, Xiangshu;Hur, Yoonkang
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.208-219
    • /
    • 2017
  • Heterosis or hybrid vigor describes a phenomenon that superior phenotypes compared to the two parents are observed in the heterozygous $F_1$-hybrid plants. Identification and characterization of heterosis-related genes (HRGs) will facilitate hybrid breeding in crops. To identify HRGs in Brassica rapa, we analyzed transcriptome profiling using a Br300K microarray in non-heading Chinese cabbage at three developmental stages. A large number of genes were differentially expressed in $F_1$ hybrids and non-additive expression was prominent. Genes that are expressed specifically for $F_1$ hybrid at all three stages were Brassica-specific uncharacterized genes and several defense-related genes. Expression of several photosynthesis- and stress-related genes were also $F_1$ hybrid-specific. Thirteen NBS-LRR class genes showed high and specific expression in $F_1$ hybrid Shulu: some of them were characterized as defense genes in Arabidopsis, but most have not been. Further characterization of these defense-related genes in Brassica species and its application will be helpful for understanding the role of defense responses in heterosis. In addition, results obtained in this study will be valuable to develop molecular markers for heterosis and disease resistance in B. rapa.

Xanthomonas oryzae pv. oryzae triggers complex transcriptomic defense network in rice

  • Nino, Marjohn;Nogoy, Franz M.;Song, Jae-Young;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.164-164
    • /
    • 2017
  • High throughput transcriptome investigations of immunity in plants highlight the complexity of gene networks leading to incompatible interaction. To identify genes crucial to resistance against Xanthomonas oryzae pv oryzae, functional genetic analysis of selected differentially expressed genes from our microarray data set was carried out. A total of 13 overexpression vector constructs were made using 35S CaMV promoter which drive constitutive expression in rice. Most of the genes are developmentally expressed especially during maximum tillering stage and are commonly highly expressed in the leaves. When screened against Xoo strain K2, the transgenic plants displayed shorter lesion length compared with wild type Dongjin which indicates partial resistance. The levels of ROS continuously magnified after inoculation which indicates robust cellular sensing necessary to initiate cell death. Elevated transcripts levels of several defense-related genes at the downstream of defense signal network also corroborate the phenotype reaction of the transgenic plants. Moreover, expression assays revealed regulation of these genes by cross-communicating signal-transductions pathways mediated by salicylic and jasmonic acid. These collective findings revealed the key immune signaling conduits critical to mount full defense against Xoo.

  • PDF

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin;Gregory B. Martin
    • The Plant Pathology Journal
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 2004
  • An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.

Nrf2 Knockout Mice that Lack Control of Drug Metabolizing and Antioxidant Enzyme Genes - Animals Highly Sensitive to Xenobiotic Toxicity

  • Enomoto, Akiko;Itoh, Ken;Harada, Takanori;Yamamoto, Masayuki
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.299-304
    • /
    • 2001
  • Xenobiotics and their reactive intermediates bind to cellular macromolecules and/or generate oxidative stress. which provoke deleterious effects on the cell function. Induction of xenobiotic-biotrans-forming enzymes and antioxidant molecules is an important defense mechanism against such insults. A group of genes involved in the defense mechanism. e.g. genes encoding glutathione S-transferases. NAD(P)H: quinone oxidoreductase, UDP-glucuronosyltransferase (UDP-GT) and ${\gamma}$-glutamylcysteine synthetase (GGCS). have a common regulatory sequence, Antioxidant or Electrophile Responsive Element (ARE/EpRE). Recently. Nrf2. discovered as a homologue of erythroid transcription factor p45 NF-E2, was shown to bind ARE/EpRE and induce the expression of these defense genes. Mice that lack Nrf2 show low basal levels of expression and/or impaired induction of these genes. which makes the animals highly sensitive to xenobiotic toxicity. Indeed. we show here that nrf2-deficient mice had a higher mortality than did the wild-type mice when exposed to acetaminophen (APAP). Detailed analyses of APAP hepatotoxicity in the nrf2 knockout mice indicate that a large amount of reactive APAP metabolites was generated in the livers due to the impaired basal expression of two detoxifying enzyme genes, UDP-GT (Ugt1a6) and GGCS. while the cytochrome P450 content was unchanged. Thus. the studies using the nrf2 knockout mice clearly demonstrate significance of the expression of Nrf2-regulated enzymes in protection against xenobiotic toxicity.

  • PDF