DOI QR코드

DOI QR Code

Identification of Glycine max Genes Expressed in Response to Soybean mosaic virus Infection

  • Jeong, Rae-Dong (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Lim, Won-Seok (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Kwon, Sang-Wook (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Kim, Kook-Hyung (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University)
  • Published : 2005.01.01

Abstract

Identification of host genes involved in disease progresses and/or defense responses is one of the most critical steps leading to the elucidation of disease resistance mechanisms in plants. Soybean mosaic virus (SMV) is one of the most prevalent pathogen of soybean (Glycine max). Although the soybeans are placed one of many important crops, relatively little is known about defense mechanism. In order to obtain host genes involved in SMV disease progress and host defense especially for virus resistance, two different cloning strategies (DD RT-PCR and Subtractive hybridization) were employed to identify pathogenesis- and defenserelated genes (PRs and DRs) from susceptible (Geumjeong 1) and resistant (Geumjeong 2) cultivars against SMV strain G7H. Using these approaches, we obtained 570 genes that expressed differentially during SMV infection processes. Based upon sequence analyses, differentially expressed host genes were classified into five groups, i.e. metabolism, genetic information processing, environmental information processing, cellular processes and unclassified group. A total of 11 differentially expressed genes including protein kinase, transcription factor, other potential signaling components and resistant-like gene involved in host defense response were selected to further characterize and determine expression profiles of each selected gene. Functional characterization of these genes will likely facilitate the elucidation of defense signal transduction and biological function in SMV-infected soybean plants.

Keywords

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Andrejeva, J., Puurand, U., Merits, A., Rabenstein, F., Jarvekulg, L. and Valkonen, J. P. 1999. Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects virus transmission and accumulation. J. Gen. Virol. 80:1133-1139 https://doi.org/10.1099/0022-1317-80-5-1133
  3. Browning, K. S. 2004. Plant translation initiation factors: it is not easy to be green. Biochem. Soc. Trans. 32:589-591 https://doi.org/10.1042/BST0320589
  4. Carginale, V., Maria, G., Capasso, C., Ionata, E., La Cara, F., Pastore, M., Bertaccini, A. and Capasso, A. 2004. Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene 332:29-34 https://doi.org/10.1016/j.gene.2004.02.030
  5. Cho, E. K., Choi, S. H. and Cho, W. T. 1983. Newly recognized soybean mosaic virus mtants and sources of resistance in soybean. Res. Rept. ORD (S.P.M.U.) 25:18-22
  6. Cho, E. K. and Goodman, R. M. 1979. Strains of Soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology. 69:467-470 https://doi.org/10.1094/Phyto-69-467
  7. Cho, E. K. and Goodman, R. M. 1982. Evaluation of resistance on soybeans to Soybean mosaic virus strains. Crop Sci. 22:1133- 1136 https://doi.org/10.2135/cropsci1982.0011183X002200060012x
  8. Crosti, P., Malerba, M. and Bianchetti, R. 2001. Tunicamycin and Brefeldin A induce in plant cells a programmed cell death showing apoptotic features. Protoplasma 216:31-38 https://doi.org/10.1007/BF02680128
  9. Czernic, P., Visser, B., Sun, W., Savoure, A., Deslandes, L., Marco, Y., Van Montagu, M. and Verbruggen, N. 1999. Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant J. 18:321-327 https://doi.org/10.1046/j.1365-313X.1999.00447.x
  10. Dempsey, D. A. and Klessig, D. F. 1994. Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol. 4:334-338 https://doi.org/10.1016/0962-8924(94)90235-6
  11. Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. and Siebert, P. D. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025-6030 https://doi.org/10.1073/pnas.93.12.6025
  12. Dixon, R. A. and Lamb, C. J. 1990. Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:339-367 https://doi.org/10.1146/annurev.pp.41.060190.002011
  13. Dixon, R. A., Harrison, M. J. and Lamb, C. J. 1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32:479-501 https://doi.org/10.1146/annurev.py.32.090194.002403
  14. Ellis, J., Dodds, P. and Pryor, T. 2000. Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3:278-284 https://doi.org/10.1016/S1369-5266(00)00080-7
  15. Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296 https://doi.org/10.1146/annurev.py.09.090171.001423
  16. Gao, Z., Johansen, E., Eyers, S., Thomas, C. L., Noel Ellis, T. H. and Maule, A. J. 2004. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40:376-385 https://doi.org/10.1111/j.1365-313X.2004.02215.x
  17. Gunduz, I., Buss, G. R., Ma, G., Chen, P. and Tolin, S. A. 2001. Genetic analysis of resistance to Soybean mosaic virus in OX670 and Harosoy soybean. Crop Sci. 41:1785-1791 https://doi.org/10.2135/cropsci2001.1785
  18. Gunduz, I., Buss, G. R., Chen, P. and Tolin, S. A. 2002. Characterization of SMV resistance genes in Tousan 140 and Hourei soybean. Crop Sci. 42:90-95 https://doi.org/10.2135/cropsci2002.0090
  19. Graham, M. A., Mark, L. F. and Shoemarker, R. C. 2002. Organization, expression and evolution of a disease resistance gene cluster in soybean. Genetics. 162:1961-1977
  20. Hammond-kosack, K. E. and Jones, J. D. 1996. Resistance geneindependent plant defense responses. Plant Cell. 8:1773-1791 https://doi.org/10.1105/tpc.8.10.1773
  21. Hayes, A. J., Ma, G., Buss, G. R. and Maroof, M. A. 2000. Molecular marker mapping of RSV4, a gene conferring resistance to all known strains soybean mosaic virus. Crop Sci. 40:1434-1437 https://doi.org/10.2135/cropsci2000.4051434x
  22. He, C. Y., Tian, A. G., Zhang, J. S., Zhang, Z. Y., Gai, J. Y. and Chen, S. Y. 2003. Isolation and characterization of a fulllength resistance gene homolog from soybean. Ther. Appl. Genet. 106:786-793 https://doi.org/10.1007/s00122-002-1043-9
  23. Jagoueix-Eveillard, S., Tarendeau, F., Guolter, K., Danet, J. L., Bove, J. M. and Garnier, M. 2001. Catharanthus roseus genes regulated differentially by mollicute infections. Mol. Plant-Microbe Interact. 14:225-233 https://doi.org/10.1094/MPMI.2001.14.2.225
  24. Jeong, S. C., Kristipati, S., Hayes, A. J., Maughan, P. J., Noffsinger, S. L., Gunduz, I. and Maroof, M. A. 2002. Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3. Crop Sci. 42:265-270 https://doi.org/10.2135/cropsci2002.0265
  25. Kanazin, V., Marek, L. F., Shoemaker, R. C. 1996. Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci. USA 93:11746-11750 https://doi.org/10.1073/pnas.93.21.11746
  26. Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447-463 https://doi.org/10.1146/annurev.ge.24.120190.002311
  27. Kim, Y.-H., Kim, O.-S., Lee, B.-C., Moon, J.-K., Lee, S.-C. and Lee, J.-Y. 2003. G7H, a new Soybean mosaic virus strain: its virulence and nucleotide sequence of CI gene. Plant Dis. 87:1372-1375 https://doi.org/10.1094/PDIS.2003.87.11.1372
  28. Klug, A. 1999. Zinc finger peptides for the regulation of gene expression. J. Mol. Biol. 293:215-218 https://doi.org/10.1006/jmbi.1999.3007
  29. Leister, D., Ballvora, A., Salamini, F. and Gebhardt, C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat. Genet. 14:421-429 https://doi.org/10.1038/ng1296-421
  30. Liang, P. and Pardee, A. B. 1998. Differential display: A general protocol. Mol. Biotechnol. 10:261-267 https://doi.org/10.1007/BF02740847
  31. Lim, S. M. 1985. Resistance to Soybean mosaic virus in soybean. Phytopathology. 79:649-657
  32. Lim, W.-S., Kim, Y.-H. and Kim, K.-H. 2003. Complete genome sequence of the genomic RNA of Soybean mosaic virus strains G7H and G5. Plant Pathol. J. 19:171-176 https://doi.org/10.5423/PPJ.2003.19.3.171
  33. Logemann, E., Wu, S. C., Schroder, J., Schmelzer, E., Somssich, I. E. and Hahlbrock, K. 1995. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes. Plant J. 8:865-876 https://doi.org/10.1046/j.1365-313X.1995.8060865.x
  34. Martin, G. B., Brommonschenkel, S. H., Chunwongse, J., Frary, A., Ganal, M. W., Spivey, R., Wu, T., Earle, E. D. and Tanksley, S. D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436 https://doi.org/10.1126/science.7902614
  35. May, M. A. and Pringle, C. R. 1998. Virus taxonomy-1997. J. Gen. Virol. 79:649-657 https://doi.org/10.1099/0022-1317-79-4-649
  36. Nadim, W. A. and Benjamin, F. M. 2004. SGMD: the Soybean Genomic and Microarray Database. Nucl. Acids Res. 32:398- 400 https://doi.org/10.1093/nar/gkh126
  37. Piffanelli, P., Devoto, A. and Schulze-Lefert, P. 1999. Defence signalling pathways in cereals. Curr. Opin. Plant Biol. 2:295- 300 https://doi.org/10.1016/S1369-5266(99)80052-1
  38. Rushton, P. J. and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1:311-315 https://doi.org/10.1016/1369-5266(88)80052-9
  39. Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X. and Zhu, L. H. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804-1806 https://doi.org/10.1126/science.270.5243.1804
  40. Staskawicz, B. J. 2001. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol. 125:73-76 https://doi.org/10.1104/pp.125.1.73
  41. van der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G. and Tanksley, S. 2002. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441-1456 https://doi.org/10.1105/tpc.010478
  42. Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 78:1101-1115 https://doi.org/10.1016/0092-8674(94)90283-6
  43. Werner, M., Uehlein, N., Proksch, P. and Kaldenhoff, R. 2001. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta 213:550-555 https://doi.org/10.1007/s004250100533
  44. Yang, Y., Shah, J. and Klessig, D. F. 1997. Signal perception and transduction in plant defense responses. Genes Dev. 11:1621-1639 https://doi.org/10.1101/gad.11.13.1621
  45. Yu, Y. G., Maroof, M. A., Buss, G. R., Maughan, P. J. and Tolin, S. A. 1994. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology 84:60-64 https://doi.org/10.1094/Phyto-84-60

Cited by

  1. Proteomic analysis of the bacterial induction of resistance to atrazine in soybean leaves vol.36, pp.8, 2014, https://doi.org/10.1007/s11738-014-1601-1
  2. Gene Expression Profiling during Wilting in Chickpea Caused by <i>Fusarium oxysporum</i> F. sp. <i>Ciceri</i> vol.03, pp.02, 2012, https://doi.org/10.4236/ajps.2012.32023
  3. Systemic gene delivery into soybean by simple rub-inoculation with plasmid DNA of a Soybean mosaic virus-based vector vol.154, pp.1, 2009, https://doi.org/10.1007/s00705-008-0286-4