DOI QR코드

DOI QR Code

Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato

  • Sahin-Cevik, Mehtap (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology) ;
  • Sivri, Emine Dogus (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology) ;
  • Cevik, Bayram (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection)
  • Received : 2018.12.12
  • Accepted : 2019.03.13
  • Published : 2019.06.01

Abstract

Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.

Keywords

E1PPBG_2019_v35n3_257_f0001.png 이미지

Fig. 1. Functional grouping of ToCV-induced genes identified in tomato plants.

E1PPBG_2019_v35n3_257_f0003.png 이미지

Fig. 3. Time course expression analyses of 6 selected cDNAs induced in response ToCV in tomato by RT-qPCR. The expression of each gene was determined at different time points as 0, 1, 8, 15, 20 and 45 dpi and normalized with β-actin used as the reference gene in inoculated (ToCV) and mock inoculated (Control) plants. Changes in the expression of each gene are shown as normalized fold induction in the graph.

E1PPBG_2019_v35n3_257_f0004.png 이미지

Fig. 2. The expression analyses of 20 selected cDNAs induced in response ToCV infection in tomato by RT-qPCR. (A) The expression of each gene was determined and normalized with β-actin used as the reference gene in 30 dpi in inoculated (ToCV) and mock inoculated (Control) plants. Changes in the expression of each gene are shown as normalized fold induction in the graph. (B) Heat map of the expression of selected cDNAs in response ToCV-inoculation (ToCV) and mock-inoculation (Control).

Table 1. Functional grouping of ToCV induced genes identified from cDNA library constructed by SSH of ToCV-inoculated and mock inoculated tomato leaf samples

E1PPBG_2019_v35n3_257_t0001.png 이미지

Table 2. Expression analysis of selected ToCV-induced genes by RT-qPCR for validation and primers used for expression analysis

E1PPBG_2019_v35n3_257_t0003.png 이미지

Table 1. Continued

E1PPBG_2019_v35n3_257_t0004.png 이미지

References

  1. Abeles, F. B. M., Morgan, P. W. and Saltveit, M. E. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, CA, USA. 414 pp.
  2. Afzal, A. J., Wood, A. J. and Lightfoot, D. A. 2008. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol. Plant-Microbe Interact. 21:507-517. https://doi.org/10.1094/MPMI-21-5-0507
  3. Akdura, N. and Cevik, B. 2011. Molecular characterization and biological of Tomato chlorosis virus (ToCV) in tomato production areas in Western Mediterranean region. Ph.D. thesis. Suleyman Demirel University, Isparta, Turkey (in Turkish).
  4. Alam, S. B. and Rochon, D. A. 2016. Cucumber necrosis virus recruits cellular heat shock protein 70 homologs at several stages of infection. J. Virol. 90:3302-3317. https://doi.org/10.1128/JVI.02833-15
  5. Alfenas-Zerbini, P., Maia, I. G., Favaro, R. D., Cascardo, J. C., Brommonschenkel, S. H. and Zerbini, F. M. 2009. Genomewide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol. Plant-Microbe Interact. 22:352-361. https://doi.org/10.1094/MPMI-22-3-0352
  6. Amaral, D. O. J., Almeida, C. M. A., Correia, M. T. S., Lima, V. L. M. and da Silva, M. V. 2012. Isolation and characterization of chitinase from tomato infected by Fusarium oxysporum f. sp. lycopersici. J. Phytopathol. 160:741-744. https://doi.org/10.1111/j.1439-0434.2012.01960.x
  7. Barbosa, J. C., Costa, H., Gioria, R. and Rezende, J. 2011. Occurrence of Tomato chlorosis virus in tomato crops in five Brazilian states. Trop. Plant Pathol. 36:256-258.
  8. Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., Zhang, X., Menke, F. L. H., Chen, S. and Zhou, J. M. 2018. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30:1543-1561. https://doi.org/10.1105/tpc.17.00981
  9. Bol, J. F., Linthorst, H. J. M. and Cornelissen, B. J. C. 1990. Plant pathogenesis-related proteins induced by virus infection. Annu. Rev. Phytopathol. 28:113-138. https://doi.org/10.1146/annurev.py.28.090190.000553
  10. Burstenbinder, K., Rzewuski, G., Wirtz, M., Hell, R. and Sauter, M. 2007. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J. 49:238-249. https://doi.org/10.1111/j.1365-313X.2006.02942.x
  11. Catoni, M., Miozzi, L., Fiorilli, V., Lanfranco, L. and Accotto, G. P. 2009. Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol. Plant-Microbe Interact. 22:1504-1513. https://doi.org/10.1094/MPMI-22-12-1504
  12. Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K. and Dinesh-Kumar, S. P. 2008. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449-462. https://doi.org/10.1016/j.cell.2007.12.031
  13. Cevik, B., Kivrak, H. and Sahin-Cevik, M. 2019. Development of a graft inoculation method and a real-time RT-PCR assay for monitoring Tomato chlorosis virus infection in tomato. J. Virol. Methods 265:1-8. https://doi.org/10.1016/j.jviromet.2018.12.004
  14. Chen, T., Lv, Y., Zhao, T., Li, N., Yang, Y., Yu, W., He, X., Liu, T. and Zhang, B. 2013. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8:e80816. https://doi.org/10.1371/journal.pone.0080816
  15. Cipollone, R., Ascenzi, P. and Visca, P. 2007. Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51-59. https://doi.org/10.1080/15216540701206859
  16. Dalmon, A., Fabre, F., Guilbaud, L., Lecoq, H. and Jacquemond, M. 2009. Comparative whitefly transmission of Tomato chlorosis virus and Tomato infectious chlorosis virus from single or mixed infections. Plant Pathol. 58:221-227. https://doi.org/10.1111/j.1365-3059.2008.01958.x
  17. Dolja, V. V., Kreuze, J. F. and Valkonen, J. P. 2006. Comparative and functional genomics of closteroviruses. Virus Res. 117:38-51. https://doi.org/10.1016/j.virusres.2006.02.002
  18. Doukhanina, E. V., Chen, S., van der Zalm, E., Godzik, A., Reed, J. and Dickman, M. B. 2006. Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J. Biol. Chem. 281:18793-18801. https://doi.org/10.1074/jbc.M511794200
  19. Dovas, C. I., Katis, N. I. and Avgelis, A. D. 2002. Multiplex detection of Criniviruses associated with epidemics of a yellowing disease of tomato in Greece. Plant Dis. 86:1345-1349. https://doi.org/10.1094/PDIS.2002.86.12.1345
  20. Fortes, I. M. and Navas-Castillo, J. 2012. Potato, an experimental and natural host of the crinivirus Tomato chlorosis virus. Eur. J. Plant Pathol. 134:81-86. https://doi.org/10.1007/s10658-012-0023-4
  21. Freitas, D. M. S., Nardin, I., Shimoyama, N., Souza-Dias, J. A. C. and Rezende, J. A. M. 2012. First report of Tomato chlorosis virus in potato in Brazil. Plant Dis. 96:593.
  22. Garcia-Cano, E., Navas-Castillo, J., Moriones, E. and Fernandez-Munoz, R. 2010. Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology 100:582-592. https://doi.org/10.1094/PHYTO-100-6-0582
  23. Greeff, C., Roux, M., Mundy, J. and Petersen, M. 2012. Receptorlike kinase complexes in plant innate immunity. Front. Plant Sci. 3:209. https://doi.org/10.3389/fpls.2012.00209
  24. Hamid, R., Khan, M. A., Ahmad, M., Ahmad, M. M., Abdin, M. Z., Musarrat, J. and Javed, S. 2013. Chitinases: An update. J. Pharm. Bioallied Sci. 5:21-29.
  25. Hanssen, I. M., Lapidot, M. and Thomma, B. P. 2010. Emerging viral diseases of tomato crops. Mol. Plant-Microbe Interact. 23:539-548. https://doi.org/10.1094/MPMI-23-5-0539
  26. Hanssen, I. M., van Esse, H. P., Ballester, A. R., Hogewoning, S. W., Parra, N. O., Paeleman, A., Lievens, B., Bovy, A. G. and Thomma, B. P. 2011. Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness. Plant Physiol. 156:301-318. https://doi.org/10.1104/pp.111.173906
  27. Hanssen, I. M. and Lapidot, M. 2012. Major tomato viruses in the Mediterranean basin. Adv. Virus Res. 84:31-66. https://doi.org/10.1016/B978-0-12-394314-9.00002-6
  28. Jacquemond, M., Verdin, E., Dalmon, A., Guilbaud, L. and Gognalons, P. 2009. Serological and molecular detection of Tomato chlorosis virus and Tomato infectious chlorosis virus in tomato. Plant Pathol. 58:210-220. https://doi.org/10.1111/j.1365-3059.2008.01959.x
  29. Kang, C. H., Jung, W. Y., Kang, Y. H., Kim, J. Y., Kim, D. G., Jeong, J. C., Baek, D. W., Jin, J. B., Lee, J. Y., Kim, M. O., Chung, W. S., Mengiste, T., Koiwa, H., Kwak, S. S., Bahk, J. D., Lee, S. Y., Nam, J. S., Yun, D. J. and Cho, M. J. 2006. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ. 13:84-95. https://doi.org/10.1038/sj.cdd.4401712
  30. Karasev, A. V. 2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293-324. https://doi.org/10.1146/annurev.phyto.38.1.293
  31. Kataya, A. R. A., Stavridou, E., Farhan, K. and Livieratos, I. C. 2008. Nucleotide sequence analysis and detection of a Greek isolate of Tomato chlorosis virus. Plant Pathol. 57:819-824. https://doi.org/10.1111/j.1365-3059.2008.01845.x
  32. Kawano, Y. and Shimamoto, K. 2013. Early signaling network in rice PRR-mediated and R-mediated immunity. Curr. Opin. Plant Biol. 16:496-504. https://doi.org/10.1016/j.pbi.2013.07.004
  33. Kawano, Y., Kaneko-Kawano, T. and Shimamoto, K. 2014. Rho family GTPase-dependent immunity in plants and animals. Front. Plant Sci. 5:522.
  34. Kong, F., Wang, J., Cheng, L., Liu, S., Wu, J., Peng, Z. and Lu, G. 2012. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene 499:108-120. https://doi.org/10.1016/j.gene.2012.01.048
  35. Levesque-Tremblay, G., Havaux, M. and Ouellet, F. 2009. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 60:691-702. https://doi.org/10.1111/j.1365-313X.2009.03991.x
  36. Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 14:166. https://doi.org/10.1186/1471-2229-14-166
  37. Li, Y., Kabbage, M., Liu, W. and Dickman, M. B. 2016. Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants. Plant Cell 28:233-247. https://doi.org/10.1105/tpc.15.00626
  38. Liu, Y., Wang, G., Wang, Z., Yang, F., Wu, G. and Hong, N. 2012. Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization. Sci. Hortic. 134:144-149. https://doi.org/10.1016/j.scienta.2011.11.022
  39. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DDC(T)) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  40. Louro, D., Accotto, G. P. and Vaira, A. M. 2000. Occurrence and diagnosis of Tomato chlorosis virus in Portugal. Eur. J. Plant Pathol. 106:589-592. https://doi.org/10.1023/A:1008738130592
  41. Lozano, G., Moriones, E. and Navas-Castillo, J. 2004. First report of sweet pepper (Capsicum annuum) as a natural host plant for Tomato chlorosis virus. Plant Dis. 88:224.
  42. Lu, J., Du, Z. X., Kong, J., Chen, L. N., Qiu, Y. H., Li, G. F., Meng, X. H. and Zhu, S. F. 2012. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS One 7:e43447. https://doi.org/10.1371/journal.pone.0043447
  43. Lucioli, A., Perla, C., Berardi, A., Gatti, F., Spano, L. and Tavazza, M. 2016. Transcriptomics of tomato plants infected with TYLCSV or expressing the central TYLCSV Rep protein domain uncover changes impacting pathogen response and senescence. Plant Physiol. Biochem. 103:61-70. https://doi.org/10.1016/j.plaphy.2016.02.034
  44. Miozzi, L., Napoli, C., Sardo, L. and Accotto, G. P. 2014. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One 9:e89951. https://doi.org/10.1371/journal.pone.0089951
  45. Moon, S. Y. and Zheng, Y. 2003. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13:13-22. https://doi.org/10.1016/S0962-8924(02)00004-1
  46. Orfanidou, C. G., Dimitriou, C., Papayiannis, L. C., Maliogka, V. I. and Katis, N. I. 2014. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res. 186:120-129. https://doi.org/10.1016/j.virusres.2013.12.013
  47. Orfanidou, C. G., Pappi, P. G., Efthimiou, K. E., Katis, N. I. and Maliogka, V. I. 2016. Transmission of Tomato chlorosis virus (ToCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Dis. 100:2043-2049. https://doi.org/10.1094/PDIS-01-16-0054-RE
  48. Papayiannis, L. C., Harkou, I. S., Markou, Y. M., Demetriou, C. N. and Katis, N. I. 2011. Rapid discrimination of Tomato chlorosis virus, Tomato infectious chlorosis virus and co-amplification of plant internal control using real-time RT-PCR. J. Virol. Methods 176:53-59. https://doi.org/10.1016/j.jviromet.2011.05.036
  49. Papenbrock, J., Guretzki, S. and Henne, M. 2011. Latest news about the sulfurtransferase protein family of higher plants. Amino Acids 41:43-57. https://doi.org/10.1007/s00726-010-0478-6
  50. Pompe-Novak, M., Gruden, K., Baebler, S., Krecic-Stres, H., Kovac, M., Jongsma, M. and Ravnikar, M. 2005. Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.). Physiol. Mol. Plant Pathol. 67:237-247. https://doi.org/10.1016/j.pmpp.2006.02.005
  51. Sade, D., Eybishtz, A., Gorovits, R., Sobol, I. and Czosnek, H. 2012. A developmentally regulated lipocalin-like gene is overexpressed in tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance. Plant Mol. Biol. 80:273-287. https://doi.org/10.1007/s11103-012-9946-6
  52. Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., Willmitzer, L., Fernie, A. R., Czosnek, H. and Brotman, Y. 2015. Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 11:81-97. https://doi.org/10.1007/s11306-014-0670-x
  53. Sahin-Cevik, M. 2013. Identification and expression analysis of early cold-induced genes from cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Gene 512:536-545. https://doi.org/10.1016/j.gene.2012.09.084
  54. Sahin-Cevik, M. and Moore, G. A. 2006. Identification and expression analysis of cold regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol. Biol. 62:83-97. https://doi.org/10.1007/s11103-006-9005-2
  55. Sahin-Cevik, M., Cevik, B., Topkaya-Kutuk, B. and Yazici, K. 2017. Identification of drought-induced genes from the leaves of Rangpur lime (Citrus limon (L) Osbeck). J. Hortic. Sci. Biotechnol. 92:636-645. https://doi.org/10.1080/14620316.2017.1343101
  56. Sahu, P. P., Rai, N. K., Chakraborty, S., Singh, M., Chandrappa, P. H., Ramesh, B., Chattopadhyay, D. and Prasad, M. 2010. Tomato cultivar tolerant to tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol. Plant Pathol. 11:531-544. https://doi.org/10.1111/j.1364-3703.2010.00630.x
  57. Sauter, M., Lorbiecke, R., Ouyang, B., Pochapsky, T. C. and Rzewuski, G. 2005. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-denosylmethionine. Plant J. 44:718-729. https://doi.org/10.1111/j.1365-313X.2005.02564.x
  58. Shahid, M. S., Kimbara, J., Onozato, A., Natsuaki, K. T. and Ikegami, M. 2015. Comparative analysis of gene expression of Ty-1 hybrid and non-hybrid tomatoes exposed to tomato yellow leaf curl virus strains. Aust. J. Crop Sci. 9:819-825.
  59. Shi, C., Ingvardsen, C., Thummler, F., Melchinger, A. E., Wenzel, G. and Lubberstedt, T. 2005. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol. Genet. Genomics 273:450-461. https://doi.org/10.1007/s00438-004-1103-8
  60. Solorzano-Morales, A., Barboza, N., Hernandez, E., Mora-Umana, F., Ramirez, P. and Hammond, R. W. 2011. Newly discovered natural hosts of Tomato chlorosis virus in Costa Rica. Plant Dis. 95:497.
  61. Tang, D., Wang, G. and Zhou, J. M. 2017. Receptor kinases in plant-pathogen interactions, more than pattern recognition. Plant Cell 29:618-637. https://doi.org/10.1105/tpc.16.00891
  62. Trenado, H. P., Fortes, I. M., Louro, D. and Navas-Castillo, J. 2007. Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. Eur. J. Plant Pathol. 118:193-196. https://doi.org/10.1007/s10658-007-9129-5
  63. Van de Poel, B. and Van Der Straeten, D. 2014. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants, more than just the precursor of ethylene! Front. Plant Sci. 5:640.
  64. Vargas, J. A., Hernandez, E., Barboza, N., Mora, F. and Ramirez, P. 2011. First report of Tomato chlorosis virus infecting sweet pepper in Costa Rica. Plant Dis. 95:1482.
  65. Virk, N., Liu, B., Zhang, H., Li, X., Zhang, Y., Li, D. and Song, F. 2012. Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress. Acta Physiol. Plant. 35:1211-1221. https://doi.org/10.1007/s11738-012-1160-2
  66. Wang, J., Yu, W., Yang, Y., Li, X., Chen, T., Liu, T., Ma, N., Yang, X., Liu, R. and Zhang, B. 2015. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci. Rep. 5:16946. https://doi.org/10.1038/srep16946
  67. Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y. M. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33:271-283. https://doi.org/10.1046/j.1365-313X.2003.01625.x
  68. Wintermantel, W. M., Wisler, G. C., Anchieta, A. G., Liu, H. Y., Karasev, A. V. and Tzanetakis, I. E. 2005. The complete nucleotide sequence and genome organization of Tomato chlorosis virus. Arch. Virol. 150:2287-2298. https://doi.org/10.1007/s00705-005-0571-4
  69. Wintermantel, W. M. and Wisler, G. C. 2006. Vector specificity, host range, and genetic diversity of Tomato chlorosis virus. Plant Dis. 90:814-819. https://doi.org/10.1094/PD-90-0814
  70. Wisler, G. C., Li, R. H., Liu, H. Y., Lowry, D. S. and Duffus, J. E. 1998a. Tomato chlorosis virus: A new whitefly-transmitted, phloem-limited bipartite. Phytopathology 88:402-409. https://doi.org/10.1094/PHYTO.1998.88.5.402
  71. Wisler, G. C., Duffus, J. E., Liu, H.-Y. and Li, R. H. 1998b. Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis. 82:270-280. https://doi.org/10.1094/PDIS.1998.82.3.270
  72. Yesilyurt, N. and Cevik, B. 2019. Genetic diversity and phylogenetic analyses of Tomato chlorosis virus isolates using the coat protein gene sequences. J. Plant Pathol. doi: 10.1007/s42161-019-00297-4 (in Press).