DOI QR코드

DOI QR Code

Priming of Defense-Related Genes Confers Root-Colonizing Bacilli-Elicited Induced Systemic Resistance in Pepper

  • Yang, Jung-Wook (Industrial Biotechnology and Bioenergy Research Center, KRIBB) ;
  • Yu, Seung-Hun (Department of Applied Biology, Chungnam National University) ;
  • Ryu, Choong-Min (Industrial Biotechnology and Bioenergy Research Center, KRIBB)
  • Published : 2009.12.01

Abstract

A group of beneficial plant bacteria has been shown to increase crop growth referring to as plant growth-promoting rhizobacteria (PGPR). PGPR can decrease plant disease directly, through the production of antagonistic compounds, and indirectly, through the elicitation of a plant defense response termed induced systemic resistance (ISR). While the mechanism of PGPR-elicited ISR has been studied extensively in the model plant Arabidopsis, it is less well characterized in crop plants such as pepper. In an effort to better understand the mechanism of ISR in crop plants, we investigated the induction of ISR by Bacillus cereus strain BS107 against Xanthomonas axonopodis pv. vesicatoria in pepper leaves. We focused on the priming effect of B. cereus strain BS107 on plant defense genes as an ISR mechanism. Of ten known pepper defense genes that were previously reported to be involved in pathogen defense signaling, the expression of Capsicum annum pathogenesis-protein 4 and CaPR1 was systemically primed by the application of strain BS107 onto pepper roots confirming by quantitative-reverse transcriptase PCR. Our results provide novel genetic evidence of the priming effect of a rhizobacterium on the expression of pepper defense genes involved in ISR.

Keywords

References

  1. Abu, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143:838-848 https://doi.org/10.1104/pp.106.092627
  2. Aime, S., Cordier. C., Alabouvette, C. and Olivain C. 2008. Comparative analysis of PR gene expression in tomato inoculated with virulent Fusarium oxysporum f. sp. lycopersici and the biocontrol strain F oxysporum Fo47. Physiol. Mol. Plant Pathol. 73:9-15 https://doi.org/10.1016/j.pmpp.2008.10.001
  3. Akram, A., Ongena, M., Duby, F., Dommes, J. and Thonart, P. 2008. Systemic resistance and lipooxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant BioI. 8:113-124 https://doi.org/10.1186/1471-2229-8-113
  4. Alstrom, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J. Gen. Appl. MicrobioI. 37:495-501 https://doi.org/10.2323/jgam.37.495
  5. Attaran, E., Rostas, M. and Zeier, J. 2008. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,1l-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol. Plant-Microbe. Interact. 21:1482-1497 https://doi.org/10.1094/MPMI-21-11-1482
  6. Bais, H. P., Weir, T. L., Perry, L. G, Gilroy, S. and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233-266 https://doi.org/10.1146/annurev.arplant.57.032905.105159
  7. Bakker, P. A. H. M., Pieterse, C. M. J. and Van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239-243 https://doi.org/10.1094/PHYTO-97-2-0239
  8. Beckers, G. J. and Comath, U. 2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant BioI. 10:425-431 https://doi.org/10.1016/j.pbi.2007.06.002
  9. Benhamou, N., Kloepper, J. W., Quadt-Hallman, A. and Tuzun, S. 1996. Induction of defenserelated ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929 https://doi.org/10.1104/pp.112.3.919
  10. Cartieaux, F., Contesto, C., Gallou, A., Desbrosses, G, Kopka, J., Taconnat, L., Renou, J. P. and Touraine, B. 2008. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strainORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol. Plant-Microbe Interact. 21:244-259 https://doi.org/10.1094/MPMI-21-2-0244
  11. Chassot, C., Buchala, A., Schoonbeek, H. J., M6traux, J. P. and Lamotte, O. 2008. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J. 55:555-567 https://doi.org/10.1111/j.1365-313X.2008.03540.x
  12. Chung, E., Ryu, C. M., Oh, S. K. and Choi, D. 2006. The essential role of pepper CaSgt1 and CaSkp1 genes in plant development and basal resistance. Physiol. Plant 126:605-612 https://doi.org/10.1111/j.1399-3054.2006.00631
  13. Conn, V. M., Walker, A. R. and Franco, C. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:208-218 https://doi.org/10.1094/MPMI-21-2-0208
  14. Comath, U., Pieterse, C. M. and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends. Plant Sci. 7:210-216 https://doi.org/10.1016/S1360-1385(02)02244-6
  15. Comath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071 https://doi.org/10.1094/MPMI-19-1062
  16. D'Arcy, W. G. 1986. Solanaceae biology and systematic, Columbia University Press
  17. De Vleesschauwer, D., Djavaheri, M., Bakker, P. A. and Hofie, M. 2008. Pseudomonas fluorescens WCS 374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 148:1996-2012 https://doi.org/10.1104/pp.108.127878
  18. Edreva, A. 2005. Pathogenesis-related proteins: research progress in the last 15years. Plant Physiol. 31:105-124
  19. Emmert, E. A. and Handelsman, J. 1999. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  20. Goellner, K. and Comath, U. 2008. Priming: it's all the world to induced disease resistance. Eur. J. Plant Pathol. 121:233-242 https://doi.org/10.1007/s10658-007-9251-4
  21. Gomez-Ariza, J., Campo, S., Rufat, M., Estopa, M., Messeguer, J., San Segundo, B. and Coca, M. 2007. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol. Plant-Microbe Interact. 20:832-842 https://doi.org/10.1094/MPMI-20-7-0832
  22. Hacisalihoglu, G., Longo, P., Olson, S. and M, Momol. T. 2007. Bacterial wilt induced changes in nutrient distribution and biomass and the effect of acibenzolar-S-methyl on bacterial wilt in tomato. Crop Prot. 26:978-982 https://doi.org/10.1016/j.cropro.2006.09.005
  23. Heil, M. 1999. Systemic acquired resistance available information and open ecological questions. J. Ecol. 87:341-346 https://doi.org/10.1046/j.1365-2745.1999.00359.x
  24. Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88:645-654 https://doi.org/10.1046/j.1365-2745.2000.00479.x
  25. Heil, M. 2001. The ecological concept of costs of induced systemic resistance (ISR). Eur. J. Plant Pathol. 107:137-146 https://doi.org/10.1023/A:1008793009517
  26. Heil, M. and Kost, C. 2006. Priming of indirect defences. Ecol. Lett. 9:813-817 https://doi.org/10.1111/j.1461-0248.2006.00932.x
  27. Hossain, M. M., Sultana, F., Kubota, M. and Hyakumachi, M. 2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting fungus Penicillium. Plant Soil 304:227-239 https://doi.org/10.1007/s11104-008-9542-3
  28. Jakab, G, Ton, J., Flors, V., Zimmerli, L., Metraux, J. P. and MauchMani, B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses Plant Physiol. 139:267-274 https://doi.org/10.1104/pp.105.065698
  29. Jetiyanon, K. and Kloepper, J. W. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control 24:285-291 https://doi.org/10.1016/S1049-9644(02)00022-1
  30. Jetiyanon, K., Fowler, W. D. and Kloepper, J. W. 2003. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis. 87:1390-1394 https://doi.org/10.1094/PDIS.2003.87.11.1390
  31. Jung, W. J., Jin, Y. L., Kim, K. Y., Park, R. D. and Kim, T. H. 2005. Changes in pathogenesis-related proteins in pepper plants with regard to biological control of phytophthor a blight with Paenibacillus illinoisensis. Biocontrol. 50:165-178 https://doi.org/10.1007/s10526-004-0451-y
  32. Kang, S. H., Cho, H. S., Cheong, H., Ryu, C. M., Kim, J. F. and Park, S. H. 2007. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 17:96-103
  33. Kim, K. J., Park, C. J., An, J. M., Ham, B. K, Lee, B. J. and Paek, K. H. 2005. CaAlaAT1 catalyzes the alanine: 2-oxoglutarate amonitransferase reaction during the resistance response against Tobacco mosaic virus in hot pepper. Planta 221:857-867 https://doi.org/10.1007/s00425-005-1500-1
  34. Kim, K. J., Park, C. J., Ham, B. K., Choi, S. B., Lee, B. J. and Paek, K. H. 2006. Induction of a cytosolic pyruvatekinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum. Plant Cell. Rep. 25:359-364 https://doi.org/10.1007/s00299-005-0082-5
  35. Kim, M. S., Kim, Y. C. and Cho, B. H. 2004. Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant BioI. 6:105-108 https://doi.org/10.1055/s-2004-817803
  36. Kim, M. S., Cho, S, M., Kang, E. Y., Im, Y. J., Hwangbo, H., Kim, Y. C., Ryu, C. M., Yang, K. Y., Chung, G. C. and Cho, B. H. 2008. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol. Plant-Microbe Interact. 21:1643-1653 https://doi.org/10.1094/MPMI-21-12-1643
  37. Kim, Y. C., Yi, S. Y., Mang, H. G., Seo, Y. S., Kim, W. T. and Choi, D. 2001. Pathogen-induced expression of cyclo-oxygenase homologue in hot pepper (Capsicum annuum cv. Pukang). J. Exp. Bot. 53:383-385 https://doi.org/10.1093/jexbot/53.367.383
  38. Kim, Y. C., Kim, S. Y, Paek, K. H., Choi, D. and Park, J. M. 2006. Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochem. Biophys. Res. Commun. 345:638-645 https://doi.org/10.1016/j.bbrc.2006.04.124
  39. Kim, Y. J. and Hwang, B. K. 2000. Pepper gene encoding a basic pathogenesis-related1 protein is pathogen and ethylene inducible. Physiol. Plant 108:51-60 https://doi.org/10.1034/j.1399-3054.2000.108001051x./
  40. Kloepper, J. W. 1993. Plant growth-promoting rhizobacteria as biological control agents. In: F. B. Metting Soil Microbial Ecology: Applications in Agricultural and Environmental Management, Marcel Dekker Inc., New York, pp 255-274
  41. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  42. Kloepper, J. W., Gutierrez-Estrada, A. and McInroy, J. A. 2007. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53:159-67 https://doi.org/10.1139/W06-114
  43. Kokalis-Burelle, N., Vavrina, C. S., Rosskopf, E. N. and Shelby, R. A. 2002. Field evaluation of plantgrowth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257-266 https://doi.org/10.1023/A:1014464716261
  44. Malolepsza, U. 2006. Induction of disease resistance by acibenzolar-S-methyl and o-hydroxyethylorutin against Botrytis cinerea in tomato plants. Crop Prot. 25:956-962 https://doi.org/10.1016/j.cropro.2005.12.009
  45. Murphy, J. F., Reddy, M. S., Ryu, C. M., Kloepper, J. W. and Li, R. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  46. Nam, Y. W. and Paek, K. H. 2001. Isolation of pepper mRNAs differentially expressed during the hypersensitive response to tobacco mosaic virus and characterization of a proteinase inhibitor gene. Plant Sci. 161:727-737 https://doi.org/10.1016/S0168-9452(01)00465-4
  47. Park, C. J., Shin, R., Park, J. M., Lee, G. J., Yoo, T. H. and Paek, K.H. 2001. Hot pepper cDNA encoding a ge-at-valuation of plant pathogenesis-related protein 4 is induced during the resistance response to tobacco mosaic virus. Mol. Cells. 11:122-127
  48. Park, C. J., Shin, R., Park, J. M., Lee, G. J., You, J. S. and Paek, K. H. 2002a. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol. Biol. 48:243-254 https://doi.org/10.1023/A:1013383329361
  49. Park, C. J., An, J. M., Shin, Y. C., Kim, K. J., Lee, B. J. and Paek, K. H. 2004b. Molecular characterization of pepper germinlike protein as the novel PR -16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection. Planta 219:797-806
  50. Park, C. J., Kim, K. J., Shin, R., Park, J. M., Shin, Y. C. and Paek, K. H. 2004. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antivial pathway. Plant J. 37:186-198 https://doi.org/10.1046/j.1365-313X.2003.01951.x
  51. Park, C. J., Shin, Y. C., Lee, B. J., Kim, K. J., Kim, J. K. and Paek, K. H. 2006. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. Planta 223:168-179 https://doi.org/10.1007/s00425-005-0067-1
  52. Pflieger, S., Palloix, A., Caranta, C., Blattes, A. and Lefebvre, V. 2001. Defense response genes colocalize with quantitative disease resistance loci in pepper. Theor. Appl. Genet. 103:920-929 https://doi.org/10.1007/s001220100726
  53. Pieterse, C. M. J., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580 https://doi.org/10.1105/tpc.10.9.1571
  54. Pozo, M. J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10:393-398 https://doi.org/10.1016/j.pbi.2007.05.004
  55. Oh, S. K., Lee, S., Chung, E., Park, J. M., Yu, S. H., Ryu, C. M. and Choi, D. 2006. Insight into Types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Planta 213:1102-1107 https://doi.org/10.1007/s00425-006-0232-1
  56. Quilis, J., Pefias, G., Messeguer, J., Brugidou, C. and San Seg-undo, B. 2008. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol. Plant-Microbe Interact. 21:1215-1231 https://doi.org/10.1094/MPMI-21-9-1215
  57. Ramamoorthy, V., Raguchander, T. and Samiyappan, R. 2002. Enhancing resistance of tomato and hotpepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur. J. Plant Pathol. 108:429-441 https://doi.org/10.1023/A:1016062702102
  58. Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158-1164 https://doi.org/10.1094/PHYTO.1998.88.11.1158
  59. Ryu, C. M., Anand, A., Kang, L. and Mysore, K. S. 2004. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J. 40:322-331 https://doi.org/10.1111/j.1365-313X.2004.02211.x
  60. Ryu, C. M., Kim, J. W., Choi, O. H., Park, S. Y., Park, S. H. and Park, C. S. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15:984-991
  61. Ryu, C. M., Murphy, J. F., Reddy, M. S. and Kloepper, J. W. 2007. A two-strain mixture of rhizobacteria elicits inducation of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J. Microbiol. Biotechnol. 17:280-286
  62. Sadd, B. M., Kleinlogel, Y., Schmid-Hempel, R and SchmidHempel, P. 2005. Trans-generational immune priming in a social insect. Biol. Lett. 1:386-388 https://doi.org/10.1098/rsbl.2005.0369
  63. Shin, R., Kim, M. J. and Paek, K. H. 2003. The CaIinl(Capsicum annuum TMV-induced Clone 1) and CaTml-2 genes are linked head-to-head and share a bidirectional promoter. Plant Cell Physiol. 44:549-554 https://doi.org/10.1093/pcp/pcg069
  64. Slaughter, A. R, Hamiduzzaman, M. M., Gindro, K., Neuhaus, J. M. and Mauch-Mani, B. 2008. Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: involvement of pterostilbene. Eur. J. Plant Pathol. 122:185-195 https://doi.org/10.1007/s10658-008-9285-2
  65. Ton, J., Jakab, G., Toquin, V., Iavicoli, V., Maeder, M., Metraux, J. P. and Mauch-Mania, B. 2005. Dissecting the b-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987-999 https://doi.org/10.1105/tpc.104.029728
  66. Ton, J., D'Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., Turlings, T. C. and Turlings, T. 2006. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16-26 https://doi.org/10.1111/j.1365-313X.2006.02935.x
  67. van Hulten, M., PeIser, M., van Loon, L. C., Pieterse, C. M. and Ton, J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103:5602-5607 https://doi.org/10.1073/pnas.0510213103
  68. van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria Eur. J. Plant Pathol. 119:243-254 https://doi.org/10.1007/s10658-007-9165-1
  69. van Peer, R, Niemann, G. J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734 https://doi.org/10.1094/Phyto-81-728
  70. Verhagen, B. W, Glazebrook, J., Zhu, T., Chang, H. S., van Loon, L. C. and Pieterse, C. M. 2004. The transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. Mol. Plant Microbe Interact. 17:895-908 https://doi.org/10.1094/MPMI.2004.17.8.895
  71. Walters, D. R. and Boyle, C. 2005. Induced resistance and allocation costs: what is the impact of pathogen challenge? Physiol. Mol. Plant Pathol. 66:40-44 https://doi.org/10.1016/j.pmpp.2005.04.002
  72. Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth- promoting rhizobacteria. Phytopathology 81:1508-1512 https://doi.org/10.1094/Phyto-81-1508
  73. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  74. Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. 2004. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136:2862-2874 https://doi.org/10.1104/pp.104.042903
  75. Yoo, T. H., Park, C. l., Ham, B. K., Kim, K. l. and Paek, K. H. 2004. Ornithine decarboxylase gene (CaODCl) is specifically induced during TMV-mediated but salicylate-independent resistant response in hot pepper. Plant Cell Physiol. 45:1537-1542 https://doi.org/10.1093/pcp/pch176
  76. Zhang, S., Reddy, M. S. and Kloepper, l. W. 2004. Tobacco growth enhancement and blue mold protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262:277-288 https://doi.org/10.1023/B:PLSO.0000037048.26437.fa

Cited by

  1. A Trifloxystrobin Fungicide Induces Systemic Tolerance to Abiotic Stresses vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.NT.11.2011.0207
  2. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis vol.111, pp.5, 2013, https://doi.org/10.1093/aob/mct049
  3. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants vol.443, pp.1, 2014, https://doi.org/10.1016/j.bbrc.2013.11.105
  4. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper phytophthora blight vol.85, 2015, https://doi.org/10.1016/j.biocontrol.2014.09.013
  5. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis vol.6, 2015, https://doi.org/10.3389/fpls.2015.00821
  6. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants vol.21, pp.3, 2015, https://doi.org/10.5423/RPD.2015.21.3.161
  7. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana vol.31, pp.3, 2015, https://doi.org/10.5423/PPJ.NT.01.2015.0006
  8. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles vol.232, pp.6, 2010, https://doi.org/10.1007/s00425-010-1259-x
  9. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper vol.73, 2014, https://doi.org/10.1016/j.apsoil.2013.07.016
  10. Elicitation of induced systemic resistance of chili pepper by iturin A analogs derived fromBacillus vallismortisEXTN-1 2016, https://doi.org/10.1139/cjps-2015-0199
  11. Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes vol.61, pp.2, 2012, https://doi.org/10.1111/j.1365-3059.2011.02516.x
  12. 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovotrum SCC1 in tobacco vol.129, pp.3, 2011, https://doi.org/10.1007/s10658-010-9687-9
  13. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.12.2014.0136
  14. Regulation of peroxidase activity under the influence of signaling molecules and Bacillus subtilis 26D in potato plants infected with Phytophthora infestans vol.50, pp.2, 2014, https://doi.org/10.1134/S0003683814020136
  15. Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper vol.18, pp.4, 2014, https://doi.org/10.7585/kjps.2014.18.4.422
  16. Pepper 9- and 13-lipoxygenase genes are differentially activated by two tobamoviruses and by hormone treatments vol.92, 2015, https://doi.org/10.1016/j.pmpp.2015.08.004
  17. Evaluation of Paenibacillus polymyxa strain SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants vol.41, pp.3, 2016, https://doi.org/10.1007/s40858-016-0077-5
  18. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both? vol.7, 2016, https://doi.org/10.3389/fmicb.2016.00196
  19. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions vol.14, pp.5, 2013, https://doi.org/10.3390/ijms14059803
  20. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms vol.32, pp.1, 2011, https://doi.org/10.1007/s10059-011-2209-6
  21. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review) vol.47, pp.4, 2011, https://doi.org/10.1134/S0003683811040090
  22. Plant endophytic Pseudomonas putida BP25 induces expression of defense genes in black pepper roots: Deciphering through suppression subtractive hybridization analysis vol.100, 2017, https://doi.org/10.1016/j.pmpp.2017.07.006
  23. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize vol.172, 2015, https://doi.org/10.1016/j.micres.2014.11.004
  24. Molecular differentiation of plant beneficial Bacillus strains useful as soil agro-inoculants pp.1164, 2017, https://doi.org/10.17660/ActaHortic.2017.1164.33
  25. Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora vol.99, pp.1, 2011, https://doi.org/10.1111/j.1365-2745.2010.01756.x
  26. Field Evaluation of the Bacterial Volatile Derivative 3-Pentanol in Priming for Induced Resistance in Pepper vol.40, pp.8, 2014, https://doi.org/10.1007/s10886-014-0488-z
  27. Stereoisomers of the Bacterial Volatile Compound 2,3-Butanediol Differently Elicit Systemic Defense Responses of Pepper against Multiple Viruses in the Field vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00090
  28. Transient Expression of Whitefly Effectors in Nicotiana benthamiana Leaves Activates Systemic Immunity Against the Leaf Pathogen Pseudomonas syringae and Soil-Borne Pathogen Ralstonia solanacearum vol.6, pp.2296-701X, 2018, https://doi.org/10.3389/fevo.2018.00090
  29. alters gene expression, ROS production and lignin synthesis in cotton seedling roots vol.124, pp.6, 2018, https://doi.org/10.1111/jam.13744