• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.027 seconds

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management

  • Choi, Eun Jeong;Kim, Dong Keun
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.309-316
    • /
    • 2018
  • Objectives: Both the valence and arousal components of affect are important considerations when managing mental healthcare because they are associated with affective and physiological responses. Research on arousal and valence analysis, which uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to classify arousal and valence, indicating positive and negative degrees of emotion as high or low. Methods: The proposed arousal and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) as a deep learning method. Results: The arousal and valence were classified and visualized on a two-dimensional coordinate plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the error rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. The proposed model performed better than previous other models. Conclusions: The proposed model appears to be effective in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental healthcare management systems.

A Study of Reinforcement Learning-based Cyber Attack Prediction using Network Attack Simulator (NASim) (네트워크 공격 시뮬레이터를 이용한 강화학습 기반 사이버 공격 예측 연구)

  • Bum-Sok Kim;Jung-Hyun Kim;Min-Suk Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.112-118
    • /
    • 2023
  • As technology advances, the need for enhanced preparedness against cyber-attacks becomes an increasingly critical problem. Therefore, it is imperative to consider various circumstances and to prepare for cyber-attack strategic technology. This paper proposes a method to solve network security problems by applying reinforcement learning to cyber-security. In general, traditional static cyber-security methods have difficulty effectively responding to modern dynamic attack patterns. To address this, we implement cyber-attack scenarios such as 'Tiny Alpha' and 'Small Alpha' and evaluate the performance of various reinforcement learning methods using Network Attack Simulator, which is a cyber-attack simulation environment based on the gymnasium (formerly Open AI gym) interface. In addition, we experimented with different RL algorithms such as value-based methods (Q-Learning, Deep-Q-Network, and Double Deep-Q-Network) and policy-based methods (Actor-Critic). As a result, we observed that value-based methods with discrete action spaces consistently outperformed policy-based methods with continuous action spaces, demonstrating a performance difference ranging from a minimum of 20.9% to a maximum of 53.2%. This result shows that the scheme not only suggests opportunities for enhancing cybersecurity strategies, but also indicates potential applications in cyber-security education and system validation across a large number of domains such as military, government, and corporate sectors.

  • PDF

Smart IoT Home Data Analysis and Device Control Algorithm Using Deep Learning (딥 러닝 기반 스마트 IoT 홈 데이터 분석 및 기기 제어 알고리즘)

  • Lee, Sang-Hyeong;Lee, Hae-Yeoun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Services that enhance user convenience by using various IoT devices are increasing with the development of Internet of Things(IoT) technology. Also, since the price of IoT sensors has become cheaper, companies providing services by collecting and utilizing data from various sensors are increasing. The smart IoT home system is a representative use case that improves the user convenience by using IoT devices. To improve user convenience of Smart IoT home system, this paper proposes a method for the control of related devices based on data analysis. Internal environment measurement data collected from IoT sensors, device control data collected from device control actuators, and user judgment data are learned to predict the current home state and control devices. Especially, differently from previous approaches, it uses deep neural network to analyze the data to determine the inner state of the home and provide information for maintaining the optimal inner environment. In the experiment, we compared the results of the long-term measured data with the inferred data and analyzed the discrimination performance of the proposed method.

Forecasting the Precipitation of the Next Day Using Deep Learning (딥러닝 기법을 이용한 내일강수 예측)

  • Ha, Ji-Hun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • For accurate precipitation forecasts the choice of weather factors and prediction method is very important. Recently, machine learning has been widely used for forecasting precipitation, and artificial neural network, one of machine learning techniques, showed good performance. In this paper, we suggest a new method for forecasting precipitation using DBN, one of deep learning techniques. DBN has an advantage that initial weights are set by unsupervised learning, so this compensates for the defects of artificial neural networks. We used past precipitation, temperature, and the parameters of the sun and moon's motion as features for forecasting precipitation. The dataset consists of observation data which had been measured for 40 years from AWS in Seoul. Experiments were based on 8-fold cross validation. As a result of estimation, we got probabilities of test dataset, so threshold was used for the decision of precipitation. CSI and Bias were used for indicating the precision of precipitation. Our experimental results showed that DBN performed better than MLP.

Development of a deep learning-based cabbage core region detection and depth classification model (딥러닝 기반 배추 심 중심 영역 및 깊이 분류 모델 개발)

  • Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.392-399
    • /
    • 2023
  • This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

Predictive System for Unconfined Compressive Strength of Lightweight Treated Soil(LTS) using Deep Learning (딥러닝을 이용한 경량혼합토의 일축압축강도 예측 시스템)

  • Park, Bohyun;Kim, Dookie;Park, Dae-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.18-25
    • /
    • 2020
  • The unconfined compressive strength of lightweight treated soils strongly depends on mixing ratio. To characterize the relation between various LTS components and the unconfined compressive strength of LTS, extensive studies have been conducted, proposing normalized factor using regression models based on their experimental results. However, these results obtained from laboratory experiments do not expect consistent prediction accuracy due to complicated relation between materials and mix proportions. In this study, deep neural network model(Deep-LTS), which was based on experimental test results performed on various mixing conditions, was applied to predict the unconfined compressive strength. It was found that the unconfined compressive strength LTS at a given mixing ratio could be resonable estimated using proposed Deep-LTS.

CNN and SVM-Based Personalized Clothing Recommendation System: Focused on Military Personnel (CNN 및 SVM 기반의 개인 맞춤형 피복추천 시스템: 군(軍) 장병 중심으로)

  • Park, GunWoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.347-353
    • /
    • 2023
  • Currently, soldiers enlisted in the military (Army) are receiving measurements (automatic, manual) of body parts and trying on sample clothing at boot training centers, and then receiving clothing in the desired size. Due to the low accuracy of the measured size during the measurement process, in the military, which uses a relatively more detailed sizing system than civilian casual clothes, the supplied clothes do not fit properly, so the frequency of changing the clothes is very frequent. In addition, there is a problem in that inventory is managed inefficiently by applying the measurement system based on the old generation body shape data collected more than a decade ago without reflecting the western-changed body type change of the MZ generation. That is, military uniforms of the necessary size are insufficient, and many unnecessary-sized military uniforms are in stock. Therefore, in order to reduce the frequency of clothing replacement and improve the efficiency of stock management, deep learning-based automatic measurement of body size, big data analysis, and machine learning-based "Personalized Combat Uniform Automatic Recommendation System for Enlisted Soldiers" is proposed.

Analysis of Vision based Technology for Smart Railway Station System (스마트 철도역사시스템 구축을 위한 영상기반 기술 분석)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1065-1070
    • /
    • 2018
  • These days there are many researches on the vision based technology using deep learning. The lots of studies on the intelligent operation and maintenance for railway station system used technologies with vision analysis function. This paper analyzes the papers which studied the intelligent station system with vision analysis function for passengers and facilities monitoring, platform monitoring, fire monitoring, and effective operation and design. Also, this paper proposes research which uses the more powerful vision technology with deep-learning for smart railway station system.