• Title/Summary/Keyword: Data Reconstruction

Search Result 1,470, Processing Time 0.03 seconds

Prediction of Daily Solar Irradiation Based on Chaos Theory (혼돈이론을 이용한 일적산 일사량의 예측)

  • Cho, S. I.;Bae, Y. M.;Yun, J. I.;Park, E. W.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2000
  • A forcasting scheme for daily solar irradiance on agricultural field sis proposed by application of chaos theory to a long term observation data. It was conducted by reconstruction of phase space, attractor analysis, and Lyapunov analysis. Using the methodology , it was determined whether evolution of the five climatic data such as daily air temperature , water temperature , relative humidity, solar radiation, and wind speed are chaotic or not. The climatic data were collected for three years by an automated weather station at Hwasung-gun, Kyonggi-province. The results showed that the evolution of solar radiation was chaotic , and could be predicted. The prediction of the evolution of the solar radiation data was executed by using ' local optimal linear reconstruction ' algorithm . The RMS value of the predicting for the solar radiation evolution was 4.32 MJ/$m^2$ day. Therefore, it was feasible to predict the daily solar radiation based on the chaos theory.

  • PDF

Accuracy Assessment of 3D Reconstruction Using LiDAR Data (LiDAR 자료를 이용한 3차원복원 정확도 평가)

  • Chung, Dong-Ki
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.11a
    • /
    • pp.81-104
    • /
    • 2005
  • Accurate 3D models in urban areas are essential for a variety of applications, such as virtual visualization, CIS, and mobile communications. LiDAR(Light Detection and Ranging) is a relatively new technology for directly obtaining 3D points. Because Manual 3D data reconstruction from LiDAR data is very costly and time consuming, many researchs is focused on the automatic extraction of the useful data. In this paper, we classified ground and non-ground points data from LiDAR data by using filtering, and we reconstructed the DTM(Digital Terrain Model) using ground points data, buildings using nonground points data. After the reconstruction, we assessed the accuracy of the DTM and buildings. As a result of, DTM from LiDAR data were 0.16m and 0.59m in high raised apartments areas and low house areas respectively, and buildings were matched with the accuracy of a l/5,000 digital map.

  • PDF

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF

3D Reconstruction Algorithm using Stereo Matching and the Marching Cubes with Intermediate Iso-surface (스테레오 정합과 중간 등위면 마칭큐브를 이용한 3차원 재구성)

  • Cho In Je;Chai Young Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2005
  • This paper proposes an effective algorithm that combines both the stereo matching and the marching cube algorithm. By applying the stereo matching technique to an image obtained from various angles, 3D geometry data are acquired, and using the camera extrinsic parameter, the images are combined. After reconstructing the combined data into mesh using the image index, the normal vector equivalent to each point is obtained and the mesh smoothing is processed. This paper describes the successive processes and techniques on the 3D mesh reconstruction, and by proposing the intermediate iso- surface algorithm. Therefore it improves the 3D data instability problem caused when using the conventional marching cube algorithm.

A Study on Three-Dimensional Model Reconstruction Based on Laser-Vision Technology (레이저 비전 기술을 이용한 물체의 3D 모델 재구성 방법에 관한 연구)

  • Nguyen, Huu Cuong;Lee, Byung Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.633-641
    • /
    • 2015
  • In this study, we proposed a three-dimensional (3D) scanning system based on laser-vision technique and rotary mechanism for automatic 3D model reconstruction. The proposed scanning system consists of a laser projector, a camera, and a turntable. For laser-camera calibration a new and simple method was proposed. 3D point cloud data of the surface of scanned object was fully collected by integrating extracted laser profiles, which were extracted from laser stripe images, corresponding to rotary angles of the rotary mechanism. The obscured laser profile problem was also solved by adding an addition camera at another viewpoint. From collected 3D point cloud data, the 3D model of the scanned object was reconstructed based on facet-representation. The reconstructed 3D models showed effectiveness and the applicability of the proposed 3D scanning system to 3D model-based applications.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

Three-dimensional Crush Measurement Methodologies Using Two-dimensional Data (2차원 데이터를 활용한 3차원 충돌 변형 측정 방법)

  • Han, Inhwan;Kang, Heejin;Park, Jong-Chan;Ha, Yongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.254-262
    • /
    • 2015
  • This paper presents 3D collision deformation modelling methodologies using photogrammetry for reconstruction of vehicle accidents. A vehicle's deformation shape in collision provides important information on how the vehicle collided. So effective measurement(scanning) and construction of a corresponding appropriate model are essential in the analysis of collision deformation shape for obtaining much information related to collision accident. Two measurement methods were used in this study: Indirect-photogrammetry which requires relatively small amount of photos or videos, and direct-photogrammetry which requires large amount of photos directly taken for the purpose of 3D modelling. When the indirect-photogrammetry method, which was mainly used in this study, lacked enough photographic information, already secured 2D numerical deformation data was used as a compensation. This made 3D collision deformation modelling for accident reconstruction analysis possible.

Development of an Automobile Black Box for Reconstruction Analysis of Collision Accidents (충돌사고 재구성 해석을 위한 차량 블랙박스의 개발)

  • 이원희;한인환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.205-214
    • /
    • 2004
  • This paper presents design concepts, specifications and performances of a newly developed Black Box, the reconstruction analysis tool with the records, and results of validation tests. The Black Box can detect crash accidents automatically, and record the vehicle's motion and driver's maneuvers during a pre-defined time period before and after the accident. The items of the Black Box included the acceleration, yaw-rate, vehicle speed, engine RPM, braking application, steering and several digital inputs for recording driver's maneuvers. To detect the accident-related-crash, it is important to understand characteristics of the crash signal, which are much different from those of normal driving. Therefore, analytical considerations should be taken in designing pre-filtering circuits and selecting appropriate parameters for identifying crash accidents. And, it is necessary to select proper combination of motion sensors and design proper pre-filtering circuits in order to describe the vehicle's motion. The analysis algorithms were developed and implemented which can perform accurate detection of crash accidents, simulating pre-crash trajectories, and calculating parameters for reconstruction analysis of crash accidents. The developed Black Box was installed on passenger cars and several types of validation tests were conducted. Through the tests, the accuracy of the recorded data and usefulness of the analysis tool for reconstruction have been validated.

Automatic Denoising in 2D Color Face Images Using Recursive PCA Reconstruction (2D 칼라 얼굴 영상에서 반복적인 PCA 재구성을 이용한 자동적인 잡음 제거)

  • Park, Hyun;Moon, Young-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1157-1160
    • /
    • 2005
  • The denoising and reconstruction of color images are increasingly studied in the field of computer vision and image processing. Especially, the denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noises on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps; training of canonical eigenface space using PCA, automatic extracting of face features using active appearance model, relighing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denosing method efficiently removes complex color noises on input face images.

  • PDF

The Management Method for Preventing Frequent Defect about Each Inspection Part from The Data Analysis of Pre-qualification of Residential Building Reconstruction (주택 재건축 예비평가 자료분석을 통한 분야별 주요결함 발생현황 및 유지관리방안 고찰)

  • Bae, Cheol-Hak;Lee, Sung-Ok;Ji, Myoung-Ho
    • Journal of the Korean housing association
    • /
    • v.21 no.6
    • /
    • pp.71-80
    • /
    • 2010
  • The purpose of this study is to classify defects of the residential building by analyzing the defect specified by prequalification of residential building reconstruction and to suggest the solution of the problem which can be arisen during each stage of plan, construction and maintenance. By sorting the main defects which is specified by pre-qualification of residential building reconstruction for three years from August 2006 to August 2009 into 4 catagories and analyzing the cause of the defects, we draw the way of maintenance to prevent the defects and make pleasant residential environment. The reason for the frequent defects from residential building is mainly deterioration. It occured on the finishing more than on the structure, which means that residents can find defects easier on the finishing than the structure and clear the demand for repair. The result of analyzing of pre-qualification of residential building reconstruction is that the defects mostly caused small, masonry constructed and lower apartment. The apartment which is not into legal right for maintenance naturally have more defects than the others. In conclusion, it is necessary to establish a law of obligation duty of the maintenance of small apartment.