• Title/Summary/Keyword: DC Converter

Search Result 3,437, Processing Time 0.025 seconds

Switching Losses Analysis of the Interleaved ZCT DC-DC Converter with Current Conduction Modes (전류전도모드에 따른 Interleaved ZCT DC-DC Converter의 스위칭 손실 분석)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.80-85
    • /
    • 2015
  • In the issues of interleaved topology which have been in limelight as high power converter, various soft-switching methods are studied to reduce switching losses in high power application. The interleaved ZCT converter has an additional filter inductor to reduce losses of diodes during reverse recovery process. However, additional current conduction modes are occurred by the inductor, we need to analyze switching losses with inductor values on each mode. In this paper, current conduction modes and boundary conditions of interleaved ZCT converter are analyzed. In the conclusion, the minimum of switching losses in converter operation modes is analyzed by calculating switching losses.

A Study on the ZVT DC/DC Boost Converter using Active Snubber (능동스너버를 이용한 ZVT DC/DC Boost 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.186-189
    • /
    • 2002
  • This paper presents an improved ZVT(Zero Voltage Transition) DC/DC Boost Converter using Active Snubber. The Conventional ZVT PWM Boost Converter is improved to minimize the switching loss of auxiliary switch using the minimum number of the components. In this thesis, advantage and disadvantages of Conventional ZVT Converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter will be discussed. In comparison a previous ZVT converter, The proposed converter reduces turn-off switching loss of the auxiliary switch Therefore, the proposed converter has a high efficiency by active snubber. The prototype of 100kHz, 2kW system was implemented to show the improved performance.

  • PDF

Bidirectional Quasi-Cuk DC/DC Converter with Reduced Voltage Stress on Capacitor and Capability of Changing the Output Polarity

  • Asl, Elias Shokati;Sabahi, Mehran
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1108-1113
    • /
    • 2017
  • In this paper, a bidirectional topology for quasi-Cuk dc/dc converter with capability of zero-voltage and zero-current-switching (ZVZCS) is proposed. The bidirectional quasi-Cuk (BQ-Cuk) converter has different voltage and current transfer ratio, reduced voltage stress on capacitor and capability of changing the output polarity in comparison with conventional bidirectional Cuk converter. In this paper, steady-state analysis of the quasi-Cuk converter with capability of ZVZCS in turn-on is presented. Then, critical inductances for transient from this operation to two new operations are calculated. Next, besides values designing of used elements, maximum and minimum value of their current and voltage are calculated. Finally, experimental results to verify the accuracy of the proposed converter in different operating modes are presented.

New Single Stage PFC Full Bridge AC/DC Converter (새로운 방식의 PFC Single Stage Full Bridge AC/DC Converter)

  • 임창섭;권순걸
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.70-75
    • /
    • 2002
  • This paper proposes new single stage power factor correction (PFC) full bridge converter. The proposed converter is combined previous ZVS full bridge DC/DC converter with two inductors, two diodes, two magnetic coupling transformer for PFC. This process of power is isolated from the source and also regulate stable DC output voltage in a category. In this topology, the voltage stress of main switches is reduced by zero voltage switching. Moreover, the proposed converter doesn't need active PFC switch and auxiliarly circuits, like control and gating board, so it could decrease the size and cost and increase the efficiency.

  • PDF

A Switching Method for Minimizing the Over Current in Transient Response of 3-phase Interleaved Bidirectional DC-DC Converter with Frequency Modulation (주파수 변조 방식 3상 인터리브드 양방향 DC-DC 컨버터의 과도상태 과전류를 최소화하기 위한 스위칭 기법)

  • Bae, Jongwoo;Jeong, Hyesoo;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.530-537
    • /
    • 2016
  • This work deals with a switching method for minimizing overcurrent in a three-phase interleaved bidirectional DC-DC converter with frequency modulation. Generally, a three-phase interleaved DC-DC converter is used to reduce a current ripple component. The combined operation of three-phase and two-phase converters can significantly reduce the ripple component. However, the conventional PWM method cannot solve severe overcurrent during phase transfer or frequency variation for power control. To overcome this problem, this work proposes a new PWM switching method. A 3 kW DC-DC power converter is designed and implemented, and the converter is operated in discontinuous current mode with varying switching frequencies for power control. Simulation and experimental results show the validity of the proposed switching method. The proposed switching method can be widely used in the field of current ripple reduction for three-phase interleaved bidirectional DC-DC converters.

Design of monolithic DC-DC Buck converter with on chip soft-start circuit (온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.568-573
    • /
    • 2009
  • This paper presents a step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in O.13um CMOS standard process. In an effort to decrease system volume, this paper proposes the on chip compensation circuit using capacitor multiplier method. Capacitor multiplier method can minimize error amplifier's compensation capacitor size by 10%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87.2% for the output voltage of 1.2V (input voltage : 3.3V), maximum load current 500mA, and 25mA output ripple current. This voltage mode controled buck converter has 1MHz switching frequency.

Digital-To-Phase-Shift PWM Circuit for High Power ZVS Full Bridge DC/DC Converter (대용랑 ZVS Full Bridge DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로)

  • Kim, Eun-Su;Kim, Tae-Jin;Byeon, Yeong-Bok;Park, Sun-Gu;Kim, Yun-Ho;Lee, Jae-Hak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Conventionally, ZVS FB DC/DC converter was controlled by monolithic IC UC3879, which includes the functions of oscillator, error amplifier and phase-shift circuit. Also, microprocessor and DSP have been widely used for the remote control and for the immediate waveform control in ZVS FB DC/DC converter. However the conventional microprocessor controller is complex and difficult to control because the controller consists of analog and digital parts. In the case of the control of FB DC/DC converter, the output is required of driving a direct signal to the switch drive circuits by the digital controller. So, this paper presents the method and realization of designing the digital-to-phase shift PWM circuit controlled by DSP (TMX320C32) in a 2,500A, 40㎾ ZVS FB DC/DC converter.

  • PDF

A Study on Single Stage High Power Factor AC-DC Converter (단일 전력단 고역률 AC-DC 컨버터에 관한 연구)

  • Lee, Won-Jae;Kim, Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.590-597
    • /
    • 2000
  • Design of single state AC-DC converter with high power factor for low level applications is proposed. The proposed converter is obtained from the integration of a buck-boost converter and the half-bridge DC-DC converter. This converter gives the good power factor correction low line current harmonic distortions and tight output voltage regulations. This converter also has a high efficiency by employing an soft switching method and synchronous rectifier. The modelling and detailed analysis for the proposed converter are performed. To verify the performance of the proposed converter a 100W converter has been designed

  • PDF

1KW converter using boost-flyback topology (Boost-Flyback topology를 이용한 1KW급 Converter)

  • Hwang, Sun-Nam;Chae, Hyeng-Jun;Lim, Sung-Kyoo;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • This paper proposed DC-DC converter for fuel cell that have high voltage and high current output characteristics. It is required step-up converter to use by general power supply, because the general rated voltage of fuel cell is low about 20$\sim$50V. The miniaturization of converter and DC link voltage can be controlled and high quality of output voltage uses mainly DC-DC converter. The boost converter and buck-boost converter do not get high boosting ratio. It is that proposed boost-flyback converter. Through simulation and an experiment, it could get high boosting ratio and efficiency more than 90%.

  • PDF

A Primary-Side-Assisted Zero-Voltage and Zero-Current Switching Three-Level DC-DC Converter

  • Jeon S. J.;Canales F.;Barbosa P. M.;Lee F. C.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.227-231
    • /
    • 2001
  • A new primary-side-assisted zero-voltage and zero-current switching (ZVZCS) three-level DC-DC converter with flying capacitor is proposed. The three-level converters are promising in high voltage applications, and ZVZCS is a very effective means for reducing switching losses. The proposed DC-DC converter uses only one auxiliary transformer and two diodes to obtain ZCS for the inner leg. It has a simple and robust structure, and offers soft-switching capability even in short-switching conditions. The proposed converter was verified by experiments in a 6KW prototype designed for communication applications and operating at 100kHz.

  • PDF