• Title/Summary/Keyword: DAP-rate

Search Result 36, Processing Time 0.025 seconds

Site-speci fic Inactivation o meso-Diaminopimelate-dehydrogenase Gene (ddh) in a Lysine-producing Brevibacterium lactofementum. (Brevibacterium lactofermentum 에서 meso-Diaminopimelate-dehydrogenase Gene (ddh)의 Site-specific Inactivation)

  • 김옥미;박선희;이갑랑
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 1998
  • Brevibacterium lactofermentum, a gram-positive bacteria, has both the diaminopimelate (DAP) pathway and meso-DAP-dehydrogenase (DDH) pathway for L-lysine biosynthesis. To investigate importance of DDH pathway and the related ddh gene in lysine production, we introduced site-specific mutagenesis technique. A 300 bp DNA fragment central to the meso-DAP-dehydrogenase gene (ddh) of B. lactofermentum was used to inactive chromosomal ddh gene via homologous recombination. Southern hybridization analysis confirmed that the chromosomal ddh gene was disrupted by the vector sequence. The B. lactofementum ddh mutant obtained have an inactive DDH pathway. The results reveal that inactivation of the ddh gene in B. lactofermentum leads to dramatic reduction of lysine production as well as decrease of the growth rate, indicating that the DDH pathway is essential for high-level lysine production as well as biosynthesis of meso-DAP.

  • PDF

Distributed Archiving Protocol between the Medical Sensor Nodes for the Home Health Service (홈 헬스를 위한 메디컬 센서노드의 분산보관 프로토콜)

  • Lee, Young-Ho;Jang, Hee-Tae;Lee, Byung-Mun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.80-90
    • /
    • 2012
  • Medical data sampled through medical sensor nodes can provide services properly only when the data are not lost even during the fault of a home health gateway. The loss of medical data can be minimized if a sensor node, in which it is expected that there are the most saving spaces, is selected after medical sensor nodes tentatively conduct local save or communicate with each other during a fault when data cannot received. Furthermore, efficient saving techniques are necessary since the cycle for sampling information is different according to the type of medical data and a space for distributed saving is different for each apparatus. So, this research suggests an efficient distributed archiving protocol (DAP) for medical data sensor nodes, each of which has a diverse sampling cycle. In order to confirm the usefulness of DAP, DAP between sensor node and gateway was designed and materialized. An experiment was conducted using the materialized program and earned a high level of recovery rate (99.3%) and of accuracy rate, which confirms that sensor nodes can play their role during a temporary fault.

Reference levels for patient Radiation Dose in interventional radiological procedures (중재적 방사선 시술 시 환자선량에 대한 참고 준위 비교)

  • Park, Hyeok;Kim, Yong-Wan;Jeon, Ju-Seob
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • The purpose of this study is to measure and evaluate radiation dose on patients in interventional radiological(IVR) procedures classified by each procedure, and aid as data for safety management. Fluroscopy time(F-time), dose area product(DAP) and number of acquired images from each kind of procedure was checked. Non-vascular procedures showed low value, and vascular procedure showed high value in all procedures except in IVC filter. F-time was longest in EVAR, which showed also the highest DAP value of all procedures. DAP-rate showed high value in TACE. By this result, we attempt to establish standard guideline of radiation dose on patients in IVR procedure.

Study on Radiation dose in according to Magnification's rate in fluoroscopy (투시 조영 검사 시 확대율에 따른 피폭선량에 관한 고찰)

  • Kang, Kyeong-Mi;Hong, Seon-Sook;Seong, Min-Sook;Song, Woon Heung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • Purpose : The purpose of this study is the magnification rates depending on the area of patient dose (DAP) and glass dosimeter see the change of the dose according to the dose characteristics of low-magnification aims to raise standards. Materials and Method : Direct DR equipment Sonialvision DAR-8000f, Shimadzu was used, the patient entrance dose measurements to the surface of the Rando Phantom of the neck and the abdomen was placed on the Xi unfors. glass dosimeter for measuring organ doses at the same time the Rando Phantom of the major organs in place by inserting a 9 ", 12", 15 ", 17" and 30 seconds for each magnification were measured according in fluoroscopy. DAP meter area of the patient dose was measured. Result : Esophagography at 17" 143% than 9"magnification the average area dose was increased. Organ dose of Esophagography at 17" was decreased 25.32% than 9" magnification. UGI at 17" was increased 129.73% DAP than 9" magnification. Organ dose of UGI at 17" was decreased 23.32% than 9" magnification. Where the major organs of magnification at 17" were decreased(lung -25.96%, stomach -33.09%, spleen -27.81%, liver -4.92%) than 9" magnification. Conclusion : Expected to get better quality image While using the proper magnification, and have recognition that difference Organ doses and DAP meter in fluoroscopy.

  • PDF

Nutrient Uptake and Productivity as Affected by Nitrogen and Potassium Application Levels in Maize/Sweet Potato Intercropping System

  • Haque, M.Moynul;Hamid, A.;Bhuiyan, N.I.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Field experiment was conducted during 1993-94 season to determine the pattern of nutrient uptake and productivity of maize/sweet potato intercropping system. Four levels of nitrogen (0, 50, 100 and 150kg N ${ha}_{-1}$) and four levels of potassium (0, 40, 80 and 120kg $K_2$O ${ha}_{-1}$) formed treatment variables. Plants were sampled periodically to determine dry matter and tissue concentrations of N and K in the individual plant components of intercropped maize and sweet potato. Nitrogen and potassium fertilizer did not interact significantly to nutrient uptake by any plant parts of intercropped maize and sweet potato. But application of N fertilizer independently enhanced N uptake in all the plant parts of maize and sweet potato. The uptake of N in leaf, leaf sheath, stem, husk, and cob of maize increased upto 90 days after planting (DAP) but grain continued to accumulate N till its maturity. Sweet potato exhibited a wide variation in N uptake pattern. Sweet potato leaf shared the maximum uptake of N at 50 DAP which rapidly increased at 70 DAP and then declined. Declination of N uptake by petiole and stem were observed after 120 DAP whereas N uptake by tuber increased slowly upto 90 DAP and then rapidly till harvest. Rate of applied K had very little effect on the uptake patterns in different components of intercropped maize. Pattern of K uptake by leaf, petiole and stem of sweet potato showed almost similar trend to N uptake. But uptake of K by tuber increased almost linearly with the K application. Pattern of N and K uptake by grain and tuber paralleled the grain yield of maize and sweet potato respectively. Intercropped productivity of maize and sweet potato found to be better by the application of 100kg N and 120 kg $K_2$O ${ha}_{-1}$

  • PDF

Fire Retardant Treatment to the Plywood with Di-ammonium Phosphate [(NH4)2 HPO4](I) -Hot and Cold Soaking Treatment and Redrying of Treated Plywood by Hot Platen- (제2인산(第二燐酸) 암모늄에 의한 합판(合板)의 내화처리(耐火處理)(I) -온냉침지처리(温冷浸漬處理)와 열판(熱板)에 의한 처리합판(處理合板)의 재건조(再乾燥) -)

  • Lee, Phil Woo;Chung, Woo Yang
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.30-36
    • /
    • 1983
  • Plywood, the representative interior decorative or structural material, is so inflammable that it may cause big fires. Therefore, it is required inevitably to manufacture the "Fire retardant treated plywood", and it will be a study on the redrying of treated plywood that we ought to solve. This study was carried out to investigate the absorption of 20% $(NH_4)_2HPO_4$ solution into the soaked plywoods by hot/cold soaking for 3/3, 6/3, 9/3 and 12/3 hours and to study drying process with drying curves and drying rates by press-drying at the platen temperature of 130, 145, 160 and $175^{\circ}C$. Solution absorption of plywoods in hot/cold soaking method increased steadily with the prolonged soaking time, and water absorption is higher than DAP absorption, and then chemical retention (DAP) exceeded the minimum retention [$1.125kg/(30cm)^3$] even in the shortest soaking treatment. Drying curves of water-soaked plywoods inclined more steeply than those of DAP soaked plywoods. And the drying proceeded rapidly with the increase in platen temperature and terminated in 2.5-4 minutes at the temperature of 160 and $170^{\circ}C$. Drying rate also increased generally with the increase of platen temperature. So it was at $175^{\circ}C$ in DAP-soaking and at $160^{\circ}C$ in water-soaking when the drying rate became above 10%/min.

  • PDF

A Deterministic Access Protocol in WiMedia Wireless Personal Area Networks (WiMedia 초고속 근거리 무선 통신에서의 결정적 접근 프로토콜)

  • Park, Hyun-Hee;Pack, Sang-Heon;Kim, Yong-Sun;Kang, Chul-Hee
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.7-17
    • /
    • 2009
  • WiMedia UWB technology is a fully distributed data communication technology developed for the application demanding a high data transmission rate in the wireless PAN area. In general, devices can send data either by reserving time slots or by using prioritized CSMA/CA. If the PCA protocol of prioritized CSMA/CA is used, they are suffered congestion as the number of devices increases. In this paper, we propose a Deterministic Access Protocol(DAP) in WiMedia WPANs. A DAP is a method to transmit data in the non-reserved DRP period without competition as each device informs the beacon order information in the beacon period and the queue information. In addition, the problem that the devices with a lower beacon slot number have more transmission opportunities is addressed by introducing the reference point. Simulation results are given to demonstrate that a DAP can improve the throughput and reduce the packet loss rate.

  • PDF

Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine

  • Butzke, C.E.;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.519-524
    • /
    • 2011
  • The correlation between alcoholic fermentation rate, measured as carbon dioxide ($CO_2$) evolution, and the rate of hydrogen sulfide ($H_2S$) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace $H_2S$ were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; $H_2S$ was quantitatively trapped in realtime using a pre-calibrated $H_2S$ detection tube which was inserted into a fermentor gas relief port. Evolution rates for $CO_2$ and $H_2S$ as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated $H_2S$ formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of $H_2S$ when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained $CO_2$ production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the $H_2S$ formation was marginal.

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Analysis of the Relationships according to the Frame (f/s) Change of Cine Imaging in Coronary Angiographic System: With Focus on FOV Enlargement and Live Zoom (심장 혈관 조영장치에서의 프레임 레이트(f/s) 변화에 따른 상관 관계 분석 : FOV 확대와 Live Zoom을 중점으로)

  • Kim, Won Hyo;Song, Jong-Nam;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.845-852
    • /
    • 2018
  • This study aimed to investigate the difference of X-ray exposure by comparing and analyzing absorbed dose according to changes in the number of frames in coronary angiography, also depending whether the zoom mode is FOV enlargement or Zoom Live. Moreover, for appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring the noise strength expressed by the standard deviation (SD), the signal to noise ratio (SNR) and contrast to noise ratio (CNR). The study was conducted with an anthropomorphic phantom on an angio-system. The linear relationship between the frame rate and the radiation dose was evident. On the contrary, the indices of image quality (SD, SNR, and CNR) were almost constant irrespective of the number of frames. The difference depending on the zoom mode was not statistically significant for DAP, air kerma, and SD (p > 0.05). However, SNR and CNR were statistically different between FOV enlargement and Zoom Live. In conclusion, since the image quality was not degraded significantly with the decreasing frame rate from 30, 15, to 7.5 f/s and the radiation dose evidently decreases in almost exactly linear proportion to the decreasing frame rate, the number of frames per second needs to be maintained as low as reasonably achievable. As for the dependence on the zooming mode, the Live Zoom mode showed statistically significant improvement in the image quality indices of SNR and CNR and it justifies active use of the Live Zoom mode which enables real-time image enlargment without additional radiation dose.