• 제목/요약/키워드: D10S

Search Result 21,070, Processing Time 0.052 seconds

2 GHz Down Conversion MMIC Mixer using SiGe HBT Foundry (SiGe HBT 공정을 이용한 2 GHz Down Conversion MMIC Mixer 개발)

  • S.-M. Heo;J.-H. Joo;S.-Y. Ryu;J.-S. Choi;Y.-H. Nho;B.-S. Kim
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.764-768
    • /
    • 2002
  • In this paper, a double balanced gilbert cell MMIC mixer was realized in Tachyonics SiGe HBT technology. The fabricated mixer has 17 dB conversion gain, 9.8 dB noise figure, -4.2 dBm output 1 dB compression point, -27 dBc RF to IF isolation, and the good input, output matching characteristics. It draws 10 mA from a 3 V supply. The simulation and the measured results are closer to each other, which confirms accuracy of the model library and reliability of the process.

t-SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A FACTORIAL DOMAIN

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.455-462
    • /
    • 2013
  • Let D be an integral domain, S be a saturated multi-plicative subset of D such that $D_S$ is a factorial domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates, and $D[\{X_{\alpha}\}]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D{\backslash}\{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[\{X_{\alpha}\}]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[\{X_{\alpha}\}]$ torsion UMT-domain).

ON THE DENOMINATOR OF DEDEKIND SUMS

  • Louboutin, Stephane R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.815-827
    • /
    • 2019
  • It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d's. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).

Ergonomic evaluation of stereoscopic contents for a museum exhibition

  • Abe, N.;Ohta, K.;Kawai, T.;Ando, K.;Kakinuma, T.;Fujita, K.;Kudo, N.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.159-165
    • /
    • 2011
  • This research entailed the production of stereoscopic 3D (S3D) contents using 2D-to-S3D conversion for exhibition at a museum and subjective evaluation. Hybrid production combining S3D images of existing live-action videos using the 2D-to-S3D conversion technology and computer graphic ones created via stereo rendering was conducted. Design and control of the chronological analysis of the parallactic angle was conducted on the produced contents, using binocular information as well as subjective evaluations, with the intent of conducting an investigation on the characteristics of such contents from the perspectives of the producers and viewers. An investigation was also conducted on the effects of the viewing position on the impressions of the S3D images.

THE COHEN TYPE THEOREM FOR S-⁎ω-PRINCIPAL IDEAL DOMAINS

  • Lim, Jung Wook
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.571-575
    • /
    • 2018
  • Let D be an integral domain, ${\ast}$ a star-operation on D, and S a (not necessarily saturated) multiplicative subset of D. In this article, we prove the Cohen type theorem for $S-{\ast}_{\omega}$-principal ideal domains, which states that D is an $S-{\ast}_{\omega}$-principal ideal domain if and only if every nonzero prime ideal of D (disjoint from S) is $S-{\ast}_{\omega}$-principal.

THE SPLIT AND NON-SPLIT TREE (D, C)-NUMBER OF A GRAPH

  • P.A. SAFEER;A. SADIQUALI;K.R. SANTHOSH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2024
  • In this paper, we introduce the concept of split and non-split tree (D, C)- set of a connected graph G and its associated color variable, namely split tree (D, C) number and non-split tree (D, C) number of G. A subset S ⊆ V of vertices in G is said to be a split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is disconnected. The minimum size of the split tree (D, C) set of G is the split tree (D, C) number of G, γχST (G) = min{|S| : S is a split tree (D, C) set}. A subset S ⊆ V of vertices of G is said to be a non-split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is connected and non-split tree (D, C) number of G is γχST (G) = min{|S| : S is a non-split tree (D, C) set of G}. The split and non-split tree (D, C) number of some standard graphs and its compliments are identified.

Experimental and Simulation Study of Barrier Properties in Schottky Barrier Thin-Film Transistors with Cr- and Ni- Source/Drain Contacts (Cr- 및 Ni- 소스/드레인 쇼트키 박막 트랜지스터의 장벽 특성에 대한 실험 및 모델링 연구)

  • Jung, Ji-Chul;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.763-766
    • /
    • 2010
  • By improving the conducting process of metal source/drain (S/D) in direct contact with the channel, schottky barrier metal-oxide-semiconductor field effect transistors (SB MOSFETs) reveal low extrinsic parasitic resistances, offer easy processing and allow for well-defined device geometries down to the smallest dimensions. In this work, we investigated the arrhenius plots of the SB MOSFETs with different S/D schottky barrier (SB) heights between simulated and experimental current-voltage characteristics. We fabricated SB MOSFETs using difference S/D metals such as Cr (${\Phi}_{Cr}$ ~4.5 eV) and Ni (${\Phi}_{Ni}$~5.2 eV), respectively. Schottky barrier height (${\Phi}_B$) of the fabricated devices were measured to be 0.25~0.31 eV (Cr-S/D device) and 0.16~0.18 eV (Ni-S/D device), respectively in the temperature range of 300 K and 475 K. The experimental results have been compared with 2-dimensional simulations, which allowed bandgap diagram analysis.

PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.323-333
    • /
    • 2010
  • The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B{\times}^L_H\;D$ in [5]. Let (D, B) be an admissible pair and let D be a bialgebra. We show that if generalized biproduct bialgebra $B{\times}^L_H\;D$ is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity $id_B$ has an inverse in the convolution algebra $Hom_k$(B, B). We show that if D is a Hopf algebra with antipode $s_D$ and $s_B$ in $Hom_k$(B, B) is an inverse of $id_B$ then $B{\times}^L_H\;D$ is a Hopf algebra with antipode s described by $s(b{\times}^L_H\;d)={\Sigma}(1_B{\times}^L_H\;s_D(b_{-1}{\cdot}d))(s_B(b_0){\times}^L_H\;1_D)$. We show that the mapping system $B{\leftrightarrows}^{{\Pi}_B}_{j_B}\;B{\times}^L_H\;D{\rightleftarrows}^{{\pi}_D}_{i_D}\;D$ (where $j_B$ and $i_D$ are the canonical inclusions, ${\Pi}_B$ and ${\pi}_D$ are the canonical coalgebra projections) characterizes $B{\times}^L_H\;D$. These generalize the corresponding results in [6].

DEPTH AND STANLEY DEPTH OF TWO SPECIAL CLASSES OF MONOMIAL IDEALS

  • Xiaoqi Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.147-160
    • /
    • 2024
  • In this paper, we define two new classes of monomial ideals I𝑙,d and Jk,d. When d ≥ 2k + 1 and 𝑙 ≤ d - k - 1, we give the exact formulas to compute the depth and Stanley depth of quotient rings S/It𝑙,d for all t ≥ 1. When d = 2k = 2𝑙, we compute the depth and Stanley depth of quotient ring S/I𝑙,d. When d ≥ 2k, we also compute the depth and Stanley depth of quotient ring S/Jk,d.

Systematic Relationships Among Ten Species of Subgenus Drosophila (Diptera: Drosophilidae) in Korea (한국 초파리아속(쌍시목: 초파리과) 10종에 대한 계통적 유연관계)

  • Nam Woo Kim;Eun Young Joo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.19 no.2
    • /
    • pp.167-176
    • /
    • 2003
  • This study sought to observe systematic relationships through taximetrical analyses by morphological characters among the 10 species, on three species in the virilis section (D. virilis, D. tsigana and D. lacertosa) and seven species in the quinaria section (D. angularis, D. brachvnephros, D. curvispina, D. kuntzei, D. nigromaculata, D. takadai and D. unispina) of the subgenus Drosophila. In the cluster and the cladistic analysis among the members of subgenus Drosophila, 10 species was divided into the 1st group of D. virilis, D. tsigana, and D. lacertosa and the 2nd group of D. angularis, D. brachynephros, D. curvispina, D. kuntzei, D. nigromaculata, D. takadai, and D. unispina. In cluster analysis, the 2nd group had three sister groups; one sister group that clustered D. angularis and D. brachynephros then D. unispina was clustered to them, another sister group clustered D, curvispina and D. takadai then D. kuntzei was clustered to them and the other sister group of D. nigromaculata. In the 10 species, D. virilis and D. lacertosa were the first to be divided and then D. tsigana. Although 1st group which D. virilis was belonged can be determined as more primitive than the 2nd group, it seemed that this group was not the direct ancestor of the 2nd group, rather there should be another ancestor. Among the quinaria species group, D. nigromaculata was the first to be divided and D. kuntzei was the most recent species to be divided.