DOI QR코드

DOI QR Code

PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS

  • Park, Junseok (Department of Mathematics The Research Institute for Basic Sciences, Hoseo University) ;
  • Kim, Wansoon (Department of Mathematics College of Natural Sciences, Hoseo University)
  • Received : 2010.03.17
  • Accepted : 2010.04.23
  • Published : 2010.06.30

Abstract

The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B{\times}^L_H\;D$ in [5]. Let (D, B) be an admissible pair and let D be a bialgebra. We show that if generalized biproduct bialgebra $B{\times}^L_H\;D$ is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity $id_B$ has an inverse in the convolution algebra $Hom_k$(B, B). We show that if D is a Hopf algebra with antipode $s_D$ and $s_B$ in $Hom_k$(B, B) is an inverse of $id_B$ then $B{\times}^L_H\;D$ is a Hopf algebra with antipode s described by $s(b{\times}^L_H\;d)={\Sigma}(1_B{\times}^L_H\;s_D(b_{-1}{\cdot}d))(s_B(b_0){\times}^L_H\;1_D)$. We show that the mapping system $B{\leftrightarrows}^{{\Pi}_B}_{j_B}\;B{\times}^L_H\;D{\rightleftarrows}^{{\pi}_D}_{i_D}\;D$ (where $j_B$ and $i_D$ are the canonical inclusions, ${\Pi}_B$ and ${\pi}_D$ are the canonical coalgebra projections) characterizes $B{\times}^L_H\;D$. These generalize the corresponding results in [6].

Keywords

Acknowledgement

Supported by : Hoseo University

References

  1. S. Caenepeel, G. Militaru and Z. Shenglin, Crossed Modules and Doi-Hopf Modules, Israel J. Math. 100 (1997), 221-247. https://doi.org/10.1007/BF02773642
  2. Zhang Liangyun, L-R smash products for bimodule algebras, Progress in Nature Science 16 (6) (2006), 580-587 https://doi.org/10.1080/10020070612330038
  3. S. Montgomery, Hopf Algebras and their actions on Rings, AMS, Rhode Island, 1992.
  4. R. K. Molnar Semi-Direct Products of Hopf Algebras, Journal of Algebra, 47 (1977), 29-51. https://doi.org/10.1016/0021-8693(77)90208-3
  5. J. S. Park, Generalized Biproduct Hopf Algebras, J. of the Chungcheong Mathematical Society 21 (2008), no. 3, 301-320
  6. D. E. Radford, The Structure of Hopf Algebras with a Projection, Journal of Algebra 92 (1985) 322-347. https://doi.org/10.1016/0021-8693(85)90124-3
  7. M. Takeuchi, $Ext_{ad}(S_pR,{\mu}^A){\cong}\^{B}_r(A/k)$, Journal of Algebra, 67 (1980) 436-475 https://doi.org/10.1016/0021-8693(80)90170-2
  8. E. Abe, Hopf Algebras, Cambridge University Press, Cambridge, 1977.