DOI QR코드

DOI QR Code

WARING'S PROBLEM FOR LINEAR FRACTIONAL TRANSFORMATIONS

  • Kim, Dong-Il (Department of Mathematics Hallym University)
  • Received : 2010.03.15
  • Accepted : 2010.06.01
  • Published : 2010.06.30

Abstract

Waring's problem deals with representing any nonconstant function in a set of functions as a sum of kth powers of nonconstant functions in the same set. Consider ${\sum}_{i=1}^p\;f_i(z)^k=z$. Suppose that $k{\geq}2$. Let p be the smallest number of functions that give the above identity. We consider Waring's problem for the set of linear fractional transformations and obtain p = k.

Keywords

Acknowledgement

Supported by : Hallym University

References

  1. C. W. Curtis, Linear Algebra, Springer-Verlag, New York, 1984, 161-162.
  2. M. Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43-75. https://doi.org/10.2307/2373660
  3. W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967, p. 16.
  4. W. K. Hayman, Waring's problem fur analytische Funktionen, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1984 (1985), 1-13.
  5. W. K. Hayman, The strength of Cartan's version of Nevanlinna theory, Bull. London Math. Soc. 36 (2004), 433-454. https://doi.org/10.1112/S0024609304003418
  6. D.-I. Kim, Waring's problem for linear polynomials and Laurent polynomials, Rocky Mountain J. Math. 35 (2005), no. 2, 1533-1553. https://doi.org/10.1216/rmjm/1181069650
  7. D. Newman and M. Slater, Waring's problem for the ring of polynomials, J. Number Theory 11 (1979), 477-487. https://doi.org/10.1016/0022-314X(79)90027-1