References
- P. Aiena, M. L. Colasante, M. Gonzalez, Operators which have a closed quasinilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701-2710. https://doi.org/10.1090/S0002-9939-02-06386-4
- Aiena, T. L. Miller, and M. M. Neumann, On a localized single-valued extension property, Math. Proc. R. Ir. Acad. 104 (2004), 17-34. https://doi.org/10.3318/PRIA.2004.104.1.17
- E. Albrecht and J. Eschmeier, Analytic functional models and local spectral theory, Proc. London Math. Soc. Ser. 3, 75 (1997), 323-348. https://doi.org/10.1112/S0024611597000373
- E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decomposable operators, Advances in invariant subspaces and other results of Operator Theory: Advances and Applications 17, Birkhauser Verlag, Basel, 1986, 15-34.
- E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 375-397.
- S. W. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann. of Math. 125 (1987), 93-103. https://doi.org/10.2307/1971289
- K. Clancey, Seminormal Operators, Lecture Notes in Math. 742, 1979, Springer-Verlag, New York.
- I. Colojoarva and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- P. C. Curtis, Jr. and M. M. Neumann, Non-analytic functional calculi and spectral maximal spaces, Pacific J. Math. 137 (1989), 65-85. https://doi.org/10.2140/pjm.1989.137.65
- D. Drissi, Local spectrum and Kaplansky's theorem on algebraic operators, Colloq. Math., 75 (1988), 159-165.
- R. Lange, On generalization of decomposability, Glasgow Math. J. 22 (1981), 77-81. https://doi.org/10.1017/S0017089500004493
- K.B. Laursen Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38(113) (1988), 157-172.
- K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 326-336.
- K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czechoslovak Math. J., 43(118) (1993), 483-497.
- K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
- M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux at spectraux, Glasgow Math. J. 29 (1987), 159-175. https://doi.org/10.1017/S0017089500006807
- M. Mbekhta, Sur la theorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
-
T. L. Miller and V. G. Miller, An operator satisfying Dunford's condition (C) but without Bishop's property (
$\beta$ ), Glasgow Math. J. 40 (1998), 427-430. https://doi.org/10.1017/S0017089500032754 - M.M. Neumann, Decomposable operators and generalized intertwining linear transformations, Operator Theory: Advances and Applications 28(1988), Birkhauser Verlag, Basel, 209-222.
- V. Ptak and P. Vrbova, On the spectral function of a normal operator, Czechoslovak Math. J. 23(98) (1973), 615-616. https://doi.org/10.1007/BF01593911
- C. Schmoeger, On isolated points of the spectrum of a bounded operator, Proc. Amer. Math. Soc. 117 (1993), 715-719. https://doi.org/10.1090/S0002-9939-1993-1111438-8
- S. L. Sun, The single-valued extension property and spectral manifolds, Proc. Amer. Math. Soc. 118 (1993), no. 1, 77-87. https://doi.org/10.1090/S0002-9939-1993-1156474-0
- F.-H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982.
- P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak. Math. J. 23(98) (1973), 483-492.
- P. Vrbova, Structure of maximal spectral spaces of generalized scalar operators, Czechoslovak Math. J. 23 (1973), 493-496.