DOI QR코드

DOI QR Code

ON LOCAL SPECTRAL PROPERTIES OF GENERALIZED SCALAR OPERATORS

  • Yoo, Jong-Kwang (Department of Liberal Arts and Science Chodang University) ;
  • Han, Hyuk (Department of Liberal Arts, Kongju National University)
  • Received : 2010.03.03
  • Accepted : 2010.04.23
  • Published : 2010.06.30

Abstract

In this paper, we prove that if $T{\in}L$(X) is a generalized scalar operator then Ker $T^p$ is the quasi-nilpotent part of T for some positive integer $p{\in}{\mathbb{N}}$. Moreover, we prove that a generalized scalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent generalized scalar operator is nilpotent.

Keywords

References

  1. P. Aiena, M. L. Colasante, M. Gonzalez, Operators which have a closed quasinilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701-2710. https://doi.org/10.1090/S0002-9939-02-06386-4
  2. Aiena, T. L. Miller, and M. M. Neumann, On a localized single-valued extension property, Math. Proc. R. Ir. Acad. 104 (2004), 17-34. https://doi.org/10.3318/PRIA.2004.104.1.17
  3. E. Albrecht and J. Eschmeier, Analytic functional models and local spectral theory, Proc. London Math. Soc. Ser. 3, 75 (1997), 323-348. https://doi.org/10.1112/S0024611597000373
  4. E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decomposable operators, Advances in invariant subspaces and other results of Operator Theory: Advances and Applications 17, Birkhauser Verlag, Basel, 1986, 15-34.
  5. E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 375-397.
  6. S. W. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann. of Math. 125 (1987), 93-103. https://doi.org/10.2307/1971289
  7. K. Clancey, Seminormal Operators, Lecture Notes in Math. 742, 1979, Springer-Verlag, New York.
  8. I. Colojoarva and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  9. P. C. Curtis, Jr. and M. M. Neumann, Non-analytic functional calculi and spectral maximal spaces, Pacific J. Math. 137 (1989), 65-85. https://doi.org/10.2140/pjm.1989.137.65
  10. D. Drissi, Local spectrum and Kaplansky's theorem on algebraic operators, Colloq. Math., 75 (1988), 159-165.
  11. R. Lange, On generalization of decomposability, Glasgow Math. J. 22 (1981), 77-81. https://doi.org/10.1017/S0017089500004493
  12. K.B. Laursen Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38(113) (1988), 157-172.
  13. K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 326-336.
  14. K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czechoslovak Math. J., 43(118) (1993), 483-497.
  15. K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
  16. M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux at spectraux, Glasgow Math. J. 29 (1987), 159-175. https://doi.org/10.1017/S0017089500006807
  17. M. Mbekhta, Sur la theorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
  18. T. L. Miller and V. G. Miller, An operator satisfying Dunford's condition (C) but without Bishop's property ($\beta$), Glasgow Math. J. 40 (1998), 427-430. https://doi.org/10.1017/S0017089500032754
  19. M.M. Neumann, Decomposable operators and generalized intertwining linear transformations, Operator Theory: Advances and Applications 28(1988), Birkhauser Verlag, Basel, 209-222.
  20. V. Ptak and P. Vrbova, On the spectral function of a normal operator, Czechoslovak Math. J. 23(98) (1973), 615-616. https://doi.org/10.1007/BF01593911
  21. C. Schmoeger, On isolated points of the spectrum of a bounded operator, Proc. Amer. Math. Soc. 117 (1993), 715-719. https://doi.org/10.1090/S0002-9939-1993-1111438-8
  22. S. L. Sun, The single-valued extension property and spectral manifolds, Proc. Amer. Math. Soc. 118 (1993), no. 1, 77-87. https://doi.org/10.1090/S0002-9939-1993-1156474-0
  23. F.-H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982.
  24. P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak. Math. J. 23(98) (1973), 483-492.
  25. P. Vrbova, Structure of maximal spectral spaces of generalized scalar operators, Czechoslovak Math. J. 23 (1973), 493-496.