DOI QR코드

DOI QR Code

THE COHEN TYPE THEOREM FOR S-⁎ω-PRINCIPAL IDEAL DOMAINS

  • Lim, Jung Wook (Department of Mathematics, College of Natural Sciences, Kyungpook National University)
  • Received : 2018.01.29
  • Accepted : 2018.07.04
  • Published : 2018.09.30

Abstract

Let D be an integral domain, ${\ast}$ a star-operation on D, and S a (not necessarily saturated) multiplicative subset of D. In this article, we prove the Cohen type theorem for $S-{\ast}_{\omega}$-principal ideal domains, which states that D is an $S-{\ast}_{\omega}$-principal ideal domain if and only if every nonzero prime ideal of D (disjoint from S) is $S-{\ast}_{\omega}$-principal.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. D.D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), 4407-4416. https://doi.org/10.1081/AGB-120013328
  2. B.G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), 284-299. https://doi.org/10.1016/0021-8693(89)90131-2
  3. I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.
  4. H. Kim, M.O. Kim, and J.W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332. https://doi.org/10.1016/j.jalgebra.2014.06.015
  5. H. Kim and J.W. Lim, On S-$*_w$-principal ideal domains, Algebra Colloq. 25 (2018), 217-224. https://doi.org/10.1142/S1005386718000159