• Title/Summary/Keyword: Cyclone Model

Search Result 128, Processing Time 0.021 seconds

Dynamic data-base Typhoon Track Prediction (DYTRAP) (동적 데이터베이스 기반 태풍 진로 예측)

  • Lee, Yunje;Kwon, H. Joe;Joo, Dong-Chan
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.209-220
    • /
    • 2011
  • A new consensus algorithm for the prediction of tropical cyclone track has been developed. Conventional consensus is a simple average of a few fixed models that showed the good performance in track prediction for the past few years. Meanwhile, the consensus in this study is a weighted average of a few models that may change for every individual forecast time. The models are selected as follows. The first step is to find the analogous past tropical cyclone tracks to the current track. The next step is to evaluate the model performances for those past tracks. Finally, we take the weighted average of the selected models. More weight is given to the higher performance model. This new algorithm has been named as DYTRAP (DYnamic data-base Typhoon tRAck Prediction) in the sense that the data base is used to find the analogous past tracks and the effective models for every individual track prediction case. DYTRAP has been applied to all 2009 tropical cyclone track prediction. The results outperforms those of all models as well as all the official forecasts of the typhoon centers. In order to prove the real usefulness of DYTRAP, it is necessary to apply the DYTRAP system to the real time prediction because the forecast in typhoon centers usually uses 6-hour or 12-hour-old model guidances.

Hydrated Lime Roasting of Precious Metal Ores with A Cyclone Reactor

  • Cho, Chong S.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.53-60
    • /
    • 1997
  • The roasting of pyrite with a cyclone reactor have been studied in terms of investigating the reaction behavior of pyrite. The development of a fundamental model for pyrite oxidation and lime sulfation in a vertical cyclone reactor. The model assumes a chemical control shrinking core behavior for the pyrite and a fluid film control shrinking core behavior for the lime. The oxygen and sulphur dioxide concentrations and the energy balance for the gas, pyrite and lime particles are solved. The model was solved and characterized numerically. Experiments have been performed to study the influence of reaction parameters such as reactor temperatures, pyrite particle sizes, air flow rates, feeding rates, and mixing ratio of pyrite and lime. The oxidation and sulfation products were characterized chemically and physically.

  • PDF

Development of Computing Model for the Process and Operation Interval of Reinforced Concrete Work using Web-CYCLONE (철근콘크리트 골조공사의 프로세스 및 공정 공백 산출 시뮬레이션 모형 개발)

  • Park, Sang-Min;Son, Chang-Baek;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.341-343
    • /
    • 2012
  • This study introduces a method for computation of process and operation gap in the specific construction operation(i.e., RC frame construction applying a block-grouping scheme) using CYCLONE-based simulation modeling and analysis technique. Since uncertainty of construction environment exists, a thoughtful production planning is required to effectively deal with a risk resulting in schedule delay in advance. This study presents the concepts of a time delay occurred in a process level and operation level in a operation model, and a method of measuring gap-times in each level while the simulation progresses. It helps a site manager to decide how many segmentation in a construction block is suitable for eliminating unproductive time-delays under the constrained resources (e.g., laborer, equipment). A case study presents a network model representing a three segmented RC frame work, and result obtained from the simulation experiment.

  • PDF

Variation of Collection Efficiency with Turbulence Model in a Mini Cyclone for Collecting Automobile Brake Fine Dust (자동차 브레이크 미세먼지 포집을 위한 미니 사이클론의 난류모델에 따른 포집효율 변화)

  • Han, Dong-Yeon;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.47-52
    • /
    • 2021
  • Fine dust generated from vehicle brakes accounts for a significant amount of fine dust from non-exhaust system. Since such brake fine dust contains a large number of heavy metal components that are fatal to the human body, a device capable of collecting them needs to be developed. A mini cyclone, one of the devices that can effectively collect fine dust, has the advantage of relatively simple shape and high collection efficiency. Therefore, in this study, the collection efficiency of the mini-cyclone was numerically analyzed using CFD in order to find out whether such a mini-cyclone is suitable for collecting brake fine dust. As a result, the cut-off diameter was predicted to be about 1.5㎛, which means that the particle trapping load of the filter can be drastically reduced. Therefore, there is a possibility that the mini-cyclone can be used to collect fine dust from disc brakes.

Development of a Probability Prediction Model for Tropical Cyclone Genesis in the Northwestern Pacific using the Logistic Regression Method

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.454-464
    • /
    • 2010
  • A probability prediction model for tropical cyclone (TC) genesis in the Northwestern Pacific area was developed using the logistic regression method. Total five predictors were used in this model: the lower-level relative vorticity, vertical wind shear, mid-level relative humidity, upper-level equivalent potential temperature, and sea surface temperature (SST). The values for four predictors except for SST were obtained from difference of spatial-averaged value between May and January, and the time average of Ni$\tilde{n}$o-3.4 index from February to April was used to see the SST effect. As a result of prediction for the TC genesis frequency from June to December during 1951 to 2007, the model was capable of predicting that 21 (22) years had higher (lower) frequency than the normal year. The analysis of real data indicated that the number of year with the higher (lower) frequency of TC genesis was 28 (29). The overall predictability was about 75%, and the model reliability was also verified statistically through the cross validation analysis method.

Comparison of tropical cyclone wind field models and their influence on estimated wind hazard

  • Gu, J.Y.;Sheng, C.;Hong, H.P.
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.321-334
    • /
    • 2020
  • Engineering type tropical cyclone (TC) wind field models are used to estimate TC wind hazard. Some of the models are well-calibrated using observation data, while others are not extensively compared and verified. They are all proxies to the real TC wind fields. The computational effort for their use differs. In the present study, a comparison of the predicted wind fields is presented by considering three commonly used models: the gradient wind field model, slab-resolving model, and a linear height-resolving model. These models essentially predict the horizontal wind speed at a different height. The gradient wind field model and linear height-resolving model are simple to use while the nonlinear slab-resolving model is more compute-intensive. A set of factors is estimated and recommended such that the estimated TC wind hazard by using these models becomes more consistent. The use of the models, including the developed set of factors, for estimating TC wind hazard over-water and over-land is presented by considering the historical tracks for a few sites. It is shown that the annual maximum TC wind speed can be adequately modelled by the generalized extreme value distribution.

On Extratropical Transition of Tropical Cyclone MINDULLE (태풍 민들레의 온대저기압화 과정에 대하여)

  • Kwon, H. Joe;Kim, Ji-Young
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • A significant number of tropical cyclones move into the midlatitudes and go through transformation procedure into extratropical cyclones. This process is generally referred to as extratropical transition of the tropical cyclone. In this study, MIDULLE(0407) case is selected. A thorough analysis is made using the GDAPS analysis data and MTM (Moving-nest Typhoon Model) model output. It is found that during the extratropical transition an important dynamics in the environmetal flow field occurs in which colder, drier (warm, moist) air penetrates in the western (eastern) quadrant of MINDULLE's outer circulation, which in turn initiates an asymmetry in the distribution of wind and temperature of the tropical cyclone. Simulated MTM result also reveals similar properties as in GDAPS analysis data. MTM result shows the gradual transition to the asymmetric distribution of wind and thickness as the extratropical transition proceeds. It is also found that the warm core disappears during the extratropical transition stage. Also, vortex tube is shown tilting towards the west during the transition. And the precipitation expands poleward of the center and the maximum precipitation appears to the left of MINDULLE which is consistent to the observations.

Vulnerability model of an Australian high-set house subjected to cyclonic wind loading

  • Henderson, D.J.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.269-285
    • /
    • 2007
  • This paper assesses the damage to high-set rectangular-plan houses with low-pitch gable roofs (built in the 1960 and 70s in the northern parts of Australia) to wind speeds experienced in tropical cyclones. The study estimates the likely failure mode and percentage of failure for a representative proportion of houses with increasing wind speed. Structural reliability concepts are used to determine the levels of damage. The wind load and the component connection strengths are treated as random variables with log-normal distributions. These variables are derived from experiments, structural analysis, damage investigations and experience. This study also incorporates progressive failures and considers the inter-dependency between the structural components in the house, when estimating the types and percentages of the overall failures in the population of these houses. The progressively increasing percentage of houses being subjected to high internal pressures resulting from damage to the envelope is considered. Results from this study also compare favourably with levels of damage and related modes of failure for high-set houses observed in post-cyclone damage surveys.

Recalculation of the Particle Dynamic Model for Gas-Solid Cyclone (싸이클론에 대한 입자운동방정식의 재계산)

  • Lee, Kyung-Mi;Jang, Jung-Hee;Jo, Young-Min;Kim, Chang-Nyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.708-717
    • /
    • 2007
  • In the present study, one of the widely applied equations for gas-solid cyclones, Leith and Licht model, was evaluated based on the 3-D CFD technique. The initial and boundary values of radial position and tangential velocity obtain-ed from the CFD simulation enabled complete calculation of the nonlinear second differential equation. This approach showed about 30% errors between calculations with and without the second order differential term. The calculation by using the simple first order equation presented shorter times to migrate up to the inner wall of the cyclone than by the second order, which theoretically implies higher separation efficiency. Further comparison is now under evaluation in terms of the detailed grade efficiency.

Numerical Study of Cyclone Dust Collector (싸이클론 집진기의 수치해석적 연구)

  • 전영남;엄태인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • Numerical simulation was performed for the 3-dimensional flow filed of gas and particle phase for cyclone dust collector. FVM(Finite Volume Method) was employed for gas phase. The flow was solved suing the k-.varepsilon. epsilon turbulence model. The particle exit at the bottom of the cone was treated as a solid wall in this model because the gas flow through the effective dust exit is usually insignificant. The major parameters considered in this study was vortex finder diameter, effective dust exit diameterm vortex finder length, inlet type for dimension performance. Particle trajectory calculations were made for three different, particle sizes of 1, 25 and 50 .mu.m. The results obtained from this study give some physical insight of dust particle collection mechanism together with the indication of the collection efficiency. The simulation results were in generally good agreement with empirical knowledge. The application of this kind of computer program looks promising as a potential tool for the design of cyclone and determination of optimum operating condition.

  • PDF