DOI QR코드

DOI QR Code

Comparison of tropical cyclone wind field models and their influence on estimated wind hazard

  • Gu, J.Y. (Department of Civil and Environmental Engineering, University of Western Ontario) ;
  • Sheng, C. (Department of Civil and Environmental Engineering, University of Western Ontario) ;
  • Hong, H.P. (Department of Civil and Environmental Engineering, University of Western Ontario)
  • Received : 2019.05.17
  • Accepted : 2020.10.08
  • Published : 2020.10.25

Abstract

Engineering type tropical cyclone (TC) wind field models are used to estimate TC wind hazard. Some of the models are well-calibrated using observation data, while others are not extensively compared and verified. They are all proxies to the real TC wind fields. The computational effort for their use differs. In the present study, a comparison of the predicted wind fields is presented by considering three commonly used models: the gradient wind field model, slab-resolving model, and a linear height-resolving model. These models essentially predict the horizontal wind speed at a different height. The gradient wind field model and linear height-resolving model are simple to use while the nonlinear slab-resolving model is more compute-intensive. A set of factors is estimated and recommended such that the estimated TC wind hazard by using these models becomes more consistent. The use of the models, including the developed set of factors, for estimating TC wind hazard over-water and over-land is presented by considering the historical tracks for a few sites. It is shown that the annual maximum TC wind speed can be adequately modelled by the generalized extreme value distribution.

Keywords

References

  1. ASCE (American Society of Civil Engineers) (2010), Minimum design loads for buildings and other structures, Standard ASCE/SEI 7-10.
  2. Batts, M.E., Cordes, M.R., Russell, C.R., Shaver, J.R., and Simiu. E. (1980), "Hurricane wind speeds in the United States", Nat. Bureau of Standards Rep. No. BSS.I24, U.S. Dept. of Commerce, Washington, D.C.
  3. Cardone, V.J., Greenwood, C.V., and Greenwood, J.A. (1992), "Unified Program for the Specification of Hurricane Boundary Layer Winds Over Surfaces of Specified Roughness", No. OI-CERC-92-1; OCEANWEATHER INC COS COB CT.
  4. Chow, S. (1971), "A study of the wind field in the planetary boundary layer of a moving tropical cyclone", Master Thesis, New York University, New York, N.Y.
  5. Dai, K., Sheng, C., Zhao, Z., Yi, Z., Camara, A. and Bitsuamlak, G. (2017), "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds", Wind Struct., 25(1), 79-100. https://doi.org/10.12989/was.2017.25.1.079.
  6. GB/T 31519-2015 (2015), Wind turbine generator system under typhoon condition; Standards Press of China, Beijing, China.
  7. GB50009 (2012), Load code for the design of building structures, Ministry of housing and urban-rural construction of the people's republic of China, Haidian District, Beijing, China.
  8. Georgiou, P.N. (1985), "Design wind speed in tropical cyclone-prone regions", Ph.D. Dissertation, Department of Civil Engineering, University of Western Ontario, Canada.
  9. Georgiou, P.N., Davenport, A.G. and Vickery, B.J. (1983), "Design wind speeds in regions dominated by tropical cyclones", J. Wind Eng. Ind. Aerod., 13(1), 139-152. https://doi.org/10.1016/0167-6105(83)90136-8.
  10. Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., and Eder, B. (2005), "Fully coupled "online" chemistry within the WRF model", Atmos. Environ., 39(37), 6957-6975. https://doi.org/10.1016/j.atmosenv.2005.04.027.
  11. Harper, B.A., (2002), "Tropical cyclone parameter estimation and the Australian region: Wind-pressure relationships and related issues for engineering planning and design-A discussion paper", Syst. Eng. Aust. Rep. J0106-PR003E.
  12. Holland, G.J. (1980), "An analytic model of the wind and pressure profiles in hurricanes", Mon. Weather Rev., 108(8), 1212-1218. https://doi.org/10.1175/1520-0493(1980)108%3C1212:AAMOTW%3E2.0.CO;2.
  13. Holland, G.J., Belanger, J.I. and Fritz, A. (2010), "A revised model for radial profiles of hurricane winds". Mon. Weather Rev., 138(12), 4393-4401. https://doi.org/10.1175/2010MWR3317.1.
  14. Hong, H.P., Li, S. H. and Duan, Z.D. (2016), "Typhoon wind hazard estimation and mapping for coastal region in mainland China", Nat. Hazards Rev., 17(2), 04016001. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000210.
  15. Hong, X., Hong, H.P., and Li, J. (2019), "Solution and validation of a three dimensional tropical cyclone boundary layer wind field model". J. Wind Eng. Ind. Aerod., 193, 103973. https://doi.org/10.1016/j.jweia.2019.103973.
  16. Huang, W. and Zhou, H. (2014), "A hybrid numerical simulation method for typhoon wind field over complex terrain", Wind Struct., 18(5). http://dx.doi.org/10.12989/was.2014.18.5.000.
  17. Kepert, J. (2001), "The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory", J. Atmospheric Sci., 58(17), 2469-2484. https://doi.org/10.1175/1520-0469(2001)058%3C2469:TDOBLJ%3E2.0.CO;2.
  18. Kepert, J. and Wang, Y. (2001), "The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement", J. Atmos. Sci., 58(17), 2485-2501. https://doi.org/10.1175/15200469(2001)058%3C2485:TDOBLJ%3E2.0.CO;2.
  19. Kepert, J.D. (2012), "Choosing a boundary layer parameterization for tropical cyclone modelling", Mon. Weather Rev. 140, 1427-1445. https://doi.org/10.1175/MWR-D-11-00217.1.
  20. Knaff, J.A. and Zehr, R.M. (2007), "Reexamination of tropical cyclone wind-pressure relationships", Weather Forecast., 22(1), 71-88. https://doi.org/10.1175/WAF965.1.
  21. Li, S.H. and Hong, H.P. (2015a), "Observations on a hurricane wind hazard model used to map extreme hurricane wind speed", J. Struct. Eng., 141(10), 04014238. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001217.
  22. Li, S.H. and Hong, H.P. (2015b), "Use of historical best track data to estimate typhoon wind hazard at selected sites in China", Nat. Hazards, 76(2), 1395-1414. https://doi.org/10.1007/s11069-014-1555-z.
  23. Li, S.H. and Hong, H.P. (2016), "Typhoon wind hazard estimation for China using an empirical track model", Nat. Hazards, 82(2), 1009-1029. https://doi.org/10.1007/s11069-016-2231-2.
  24. Liu, Y., Chen, D., Li, S., Chan, P.W. and Zhang, Q. (2019), "A three-dimensional numerical simulation approach to assess typhoon hazards in China coastal regions", Nat. Hazards, 96(2), 809-835. https://doi.org/10.1007/s11069-019-03570-y.
  25. Meng, Y., Matsui, M. and Hibi, K. (1995), "An analytical model for simulation of the wind field in a typhoon boundary layer", J. Wind Eng. Ind. Aerod., 56(2-3), 291-310. https://doi.org/10.1016/0167-6105(94)00014-5.
  26. Meng, Y., Matsui, M. and Hibi, K. (1997), "A numerical study of the wind field in a typhoon boundary layer", J. Wind Eng. Ind. Aerod., 67, 437-448. https://doi.org/10.1016/S0167-6105(97)00092-5.
  27. Peng, Y., Wang, Z. and Ai, X. (2018), "Wind-induced fragility assessment of urban trees with structural uncertainties", Wind Struct., 26(1), 45-56. https://doi.org/10.12989/was.2018.26.1.045.
  28. Powell, M.D., Houston, S.H., Amat, L.R. and Morisseau-Leroy, N. (1998), "The HRD real-time hurricane wind analysis system", J. Wind Eng. Ind. Aerod. 77, 53-64. https://doi.org/10.12989/was.2018.26.1.045.
  29. Powell, M.D., Uhlhorn, E.W. and Kepert, J.D. (2009), "Estimating maximum surface winds from hurricane reconnaissance measurements", Weather Forecast., 24(3), 868-883. https://doi.org/10.1175/2008WAF2007087.1.
  30. Russell, L.R. (1971), "Probability distributions for hurricane effects", J. Wtrwy., Harbors, and Coast. Engrg. Div., ASCE, 97(1), 139-154 https://doi.org/10.1061/AWHCAR.0000056
  31. Shapiro, L.J. (1983), "The asymmetric boundary layer flow under a translating hurricane", J. Atmos. Sci., 40(8), 1984-1998. https://doi.org/10.1175/15200469(1983)040%3C1984:TABLFU%3E2.0.CO;2.
  32. Smagorinsky, J. (1963), "General circulation experiments with the primitive equations: I", Basic Exp., Mon. Weather Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
  33. Thompson, E. and Cardone, V. (1996), "Practical modeling of hurricane surface wind fields", J. Waterw. Port Coast. Ocean Eng., 122(4), 195-205. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:4(195).
  34. Tomokiyo, E., Maeda, J., Ishida, N. and Imamura, Y. (2004), "Typhoon damage analysis of transmission towers in mountainous regions of Kyushu, Japan", Wind Struct., 7(5), 345-357. https://doi.org/10.12989/was.2004.7.5.345.
  35. Valamanesh, V., Myers, A.T., Arwade, S.R., Hajjar, J.F., Hines, E., and Pang, W. (2016), "Wind-wave prediction equations for probabilistic offshore hurricane hazard analysis", Nat. Hazards., 83(1), 541-562. https://doi.org/10.1007/s11069-016-2331-z.
  36. Vickery, P.J. and Wadhera, D. (2008), "Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight level pressure and H*Wind data", J. Appl. Meteorol. Climatol. 46, 2497-2517. https://doi.org/10.1175/2008JAMC1837.1.
  37. Vickery, P.J. and Wadhera, D., Powell, M.D. and Chen, Y. (2009b), "A hurricane boundary layer and wind field model for use in engineering applications", J. Appl. Meteorol., 48, 381-405. https://doi.org/10.1175/2008JAMC1841.1.
  38. Vickery, P.J., Skerjl, P. and Twisdale, L. (2000a), "Hurricane wind field model for use in hurricane simulations", J. Struct. Eng., 126(10), 1203-1221. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1203)
  39. Vickery, P.J., Skerjl, P. and Twisdale, L. (2000b), "Simulation of hurricane risk in the U.S. using empirical track model", J. Struct. Eng., 126(10), 1222-1237. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222).
  40. Vickery, P.J., Wadhera, D. Twisdale, L.A. and Lavelle, F.M. (2009a), "U.S. hurricane wind speed risk and uncertainty", J. Struct. Eng., 135(3), 301-320. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(301).
  41. Watson Jr, C.C. and Johnson, M.E. (2004), "Hurricane loss estimation models: Opportunities for improving the state of the art", Bull. Am. Meteorol. Soc., 85(11), 1713-1726. https://doi.org/10.1175/BAMS-85-11-1713.
  42. Wills, J.A.B., Lee, B.E. and Wyatt, T.A. (2000), "A review of tropical cyclone wind field models", Wind Struct., 3(2), 133-142. https://doi.org/10.12989/was.2000.3.2.133.
  43. Xiao, Y.F., Duan, Z.D., Xiao, Y.Q., Ou, J.P., Chang, L. and Li., Q.S. (2011), "Typhoon wind hazard analysis for southeast China coastal regions", Struct. Safety., 33(4-5), 286-295. https://doi.org/10.1016/j.strusafe.2011.04.003.
  44. Yang, Y., Tang, W., Liu, Y., Xin, Y. and Wu, Q. (2018), "Quantitative resilience assessment for power transmission systems under typhoon weather", IEEE Access, 6, 40747-40756. https://doi.org/10.1109/ACCESS.2018.2858860.
  45. Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y. and Chen, D. (2014), "An overview of the China Meteorological Administration tropical cyclone database", J. Atmos. Oceanic Technol., 31(2), 287-301. https://doi.org/10.1175/JTECH-D-12-00119.1.