• Title/Summary/Keyword: Cumulative plastic model

Search Result 17, Processing Time 0.03 seconds

FIND THE ROOT CAUSE OF WELDING-INDUCED DISTORTION BY NUMERICAL MODELING METHOD

  • Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.681-687
    • /
    • 2002
  • The cumulative, shrinkage plastic strains and their distributions in the weld joint after completion of the welding process determine welding-induced distortion. Although the weldment undergoes many complex physical and metallurgical changes during welding, only the material plastic temperature range and its cooling history below this temperature range influence the [mal state of the cumulative shrinkage plastic strains. In addition, for structural welds, these plastic strains are uniform, except in the arc start and stop regions, along the weld. Therefore, the plastic strain-based "inherent shrinkage model" is effective and accurate to describe welding-induced distortion. This paper presents the theoretical background and numerical verification of this root cause.

  • PDF

Prediction of Cumulative Plastic Displacement in the Concrete Track Roadbed Caused by Cyclic Loading (반복하중에 의한 콘크리트 궤도 노반의 누적 소성 변위 예측)

  • Won, Sang-Soo;Lee, Jin-Wook;Lee, Seong-Hyeok;Jung, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Plastic deformation of roadbed influences the stability and maintenance of concrete slab track. Long-term plastic deformation in a railway roadbed is generated primarily due to accumulated inelastic strains caused by repeated passing of trains. Prediction of cumulative plastic deformation is important in cost-effective maintenance of railway tracks as well as for the safe operation of trains. In this study, the vertical displacements in railway roadbeds with different thicknesses of reinforced roadbed were computed. Parameters of the power model for cumulative plastic strain were calibrated by using the data from triaxial tests and full-scale loading tests. Results of three-dimensional finite element analyses of standard roadbed sections provide us with design guidelines for the selection of the thickness of reinforced roadbed.

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

Drift displacement data based estimation of cumulative plastic deformation ratios for buildings

  • Nishitani, Akira;Matsui, Chisa;Hara, Yushiro;Xiang, Ping;Nitta, Yoshihiro;Hatada, Tomohiko;Katamura, Ryota;Matsuya, Iwao;Tanii, Takashi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.881-896
    • /
    • 2015
  • The authors' research group has developed a noncontact type of sensors which directly measure the inter-story drift displacements of a building during a seismic event. Soon after that event, such seismically-induced drift displacement data would provide structural engineers with useful information to judge how the stories have been damaged. This paper presents a scheme of estimating the story cumulative plastic deformation ratios based on such measured drift displacement information toward the building safety monitoring. The presented scheme requires the data of story drift displacements and the ground motion acceleration. The involved calculations are rather simple without any detailed information on structural elements required: the story hysteresis loops are first estimated and then the cumulative plastic deformation ratio of each story is evaluated from the estimated hysteresis. The effectiveness of the scheme is demonstrated by utilizing the data of full-scale building model experiment performed at E-defense and conducting numerical simulations.

Energy-based damage index for steel structures

  • Bojorquez, E.;Reyes-Salazar, A.;Teran-Gilmore, A.;Ruiz, S.E.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.331-348
    • /
    • 2010
  • Ample research effort has been oriented into developing damage indices with the aim of estimating in a reasonable manner the consequences, in terms of structural damage and deterioration, of severe plastic cycling. Although several studies have been devoted to calibrate damage indices for steel and reinforced concrete members; currently, there is a challenge to study and calibrate the use of such indices for the practical evaluation of complex structures. The aim of this paper is to introduce an energy-based damage index for multi-degree-of-freedom steel buildings that accounts explicitly for the effects of cumulative plastic deformation demands. The model has been developed by complementing the results obtained from experimental testing of steel members with those derived from analytical studies regarding the distribution of plastic demands on several steel frames designed according to the Mexico City Building Code. It is concluded that the approach discussed herein is a promising tool for practical structural evaluation of framed structures subjected to large energy demands.

A model of fatigue crack growth based on plastic stretch at the crack tip (균열선단의 소성스트레치를 이용한 피로균열성장모델)

  • Ju, Yeong Sik;Kim, Jae Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The fatigue crack growth model is derived and the retardation model is proposed. The fatigue crack growth model considers the residual plastic stretch on the crack surface which results from the plastic deformation at the tip of fatigue crack. The fatigue crack growth rate is calculated by using the cumulative fatigue damage and plastic strain energy in the material elements at the crack tip. This model gives the crack growth rate in reasonable agreement with test data for aluminum alloy AL6061-T651 and 17-4PH casting steel. The fatigue crack growth retardation model is based on the residual plastic stretch produced from a tensile overload which reduced the plastic strain range of the following load cycles. A strip-yield model of a crack tip plasticity is used for the calculation of a plastic zone size. The proposed retardation model characterized the observed features and delayed retardation of the fatigue crack growth under tensile overload.

Life Assessment of Automotive Electronic Part using Virtual Qualification (Virtual Qualification을 통한 자동차용 전장부품의 수명 평가)

  • Lee, Hae-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.143-146
    • /
    • 2005
  • In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

  • PDF

Effects of Greenhouse Covering Material on Environment Factors and Fruit Yield in Protected Cultivation of Sweet Pepper (파프리카 재배 온실의 피복재 종류에 따른 환경요인과 수량성)

  • Kim, Ho-Cheol;Jung, Sek-Gi;Lee, Jeong-Hyun;Bae, Hyang-Jong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.253-257
    • /
    • 2009
  • To analysis effect of environment factors on productivity of sweet pepper according to greenhouse covering material (glass, plastic film), this was investigated. In glasshouse, outside light was positively correlated with yield as that $100MJ{\cdot}m^{-2}$ of outside light increased $300{\sim}500g{\cdot}m^{-2}$, also cumulative temperature was same tendency. On possibility of model development for yield estimate cumulative temperature was high than outside light. According to covering material, leaf photosynthesis, productivity per out-side light and term in glasshouse was more high 13%, 46%, and 47% compared with plastic film house, respectively. Result of analysis of effect of light, temperature, and $CO_2$ on yield, relative yield coefficient, yield increment coefficient, and yield reduction coefficient in glasshouse were more high 25%, 73%, and 34% compared with plastic film house, respectively. Hence, sweet pepper's growing in glasshouse compare with plastic film house had more productivity, but that had more sensitivity to charge of environment factors.

Analysis of the Spectrum Intensity Scale for Inelastic Seismic Response Evaluation (비탄성 지진응답평가를 위한 Spectrum Intensity Scale 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Seo, Ju-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.35-44
    • /
    • 2011
  • PGA (Peak Ground Acceleration) is the parameter which indicates the peak value for strong ground motion and is mainly due to the intensity of the seismic wave. Usually, seismic waves can consist of different characteristics and can have different effects on structures. Therefore, it may be undesirable that the effects of a seismic wave are evaluated only based on the PGA. In this study, time history analysis was executed with a single degree of freedom model for inelastic seismic analysis. The numerical model was assumed to be a perfect elasto-plastic model. Input accelerations were made with El Centro NS (1940), other earthquake records and artificial earthquakes. The displacement ductility demand and cumulative dissipated energy, which were calculated from other artificial earthquakes, were compared. As a result, different responses from other seismic waves which have the same PGA were identified. Therefore, an index which could reflect both seismic and structural characteristics is needed. The SI (Spectrum Intensity) scale which could be obtained from integration by parts of the velocity response spectrum could be an index reflecting the inelastic seismic response of structures. It can be possible to identify from correlation analysis among the SI scale, displacement ductility demand and cumulative dissipated energy that the SI scale is sufficient to be an index for the inelastic response of structures under seismic conditions.

Studies into a high performance composite connection for high-rise buildings

  • Lou, G.B.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.789-809
    • /
    • 2015
  • This paper presents experimental and numerical studies into the structural behavior of a high performance corbel type composite connection adopted in Raffles City of Hangzhou, China. Physical tests under both monotonic and quasi-static cyclic loads were conducted to investigate the load carrying capacities and deformation characteristics of this new type of composite connection. A variety of structural responses are examined in detail, including load-deformation characteristics, the development of sectional direct and shear strains, and the history of cumulative plastic deformation and energy. A three-dimensional finite element model built up with solid elements was also proposed for the verification against test results. The studies demonstrate the high rigidity, strength and rotation capacities of the corbel type composite connections, and give detailed structural understanding for engineering design and practice. Structural engineers are encouraged to adopt the proposed corbel type composite connections in mega high-rise buildings to achieve an economical and buildable and architectural friendly engineering solution.