Life Assessment of Automotive Electronic Part using Virtual Qualification

Virtual Qualification을 통한 자동차용 전장부품의 수명 평가

  • 이해진 (한양대학교 대학원 자동차공학과) ;
  • 이정윤 (경기대학교 기계시스템디자인공학부) ;
  • 오재응 (한양대학교 기계공학부)
  • Published : 2005.11.01

Abstract

In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

Keywords