• Title/Summary/Keyword: Cross-section analysis

Search Result 1,905, Processing Time 0.028 seconds

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

Partial Photoionization Cross Section of Collinear eZe Helium: Numerical Confirmation of Semiclassical Predictions

  • Lee, Min-Ho;Choi, Nark Nyul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1486-1494
    • /
    • 2018
  • Based on the semiclassical theory of chaotic scattering, Tanner et al. [J. Phys. B 40, F157 (2007)] proposed the fluctuation in the partial photoionization cross section of helium below the double-ionization threshold would show the same characteristics as in the total cross section, predicting that the Fourier spectrum of the fluctuation reveals peaks at the classical actions of closed triple collision orbits and the amplitude of the fluctuation decreases algebraically as the energy approaches the double-ionization threshold. In that paper, however, the predictions were not clearly confirmed due to the lack of experimental data with sufficient accuracy. So instead, we calculate the partial photoionization cross sections of collinear eZe helium for the energy range from the single-ionization threshold $I_{20}$ to $I_{32}$ in order to numerically confirm the predictions. Analysis of the fluctuation in the partial cross section shows that the predictions are indeed valid. Our findings mean that the fluctuation in the partial photoionization cross section can be described by classical triple collision orbits in the semiclassical limit. Thus it explains in a natural way the mirroring and mimicking structures observed in cross section signals for different ionization channels.

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Yoo, Hong-Hee;Lee, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.348-353
    • /
    • 2008
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.363-369
    • /
    • 2009
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method (구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

Development of multigroup cross section library generation system TPAMS

  • Lili Wen;Haicheng Wu;Ying Chen;Xiaoming Chai;Xiaofei Wu;Xiaolan Tu;Yuan Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2208-2219
    • /
    • 2024
  • Kylin-2 is an advanced neutronics lattice code, developed by Nuclear Power Institute of China. High-precision multigroup cross section library is need for KYLIN-2 to carry out simulation of current pressurized water reactor (PWR) and advanced reactor. In this paper a multigroup cross section library generation system named TPAMS was developed, the methods in TPAMS dealing with resonance data such as subgroup parameters, lambda factor, resonance integral were discussed. Moreover, the depletion chain simplification method was studied. TPAMS can produce multigroup library in binary and ASIIC formats, including detailed data contents for resonance, transport and depletion calculations. A multigroup cross section library has been generated for KYLIN-2 based on TPAMS system. The multigroup cross section library was verified through the analysis of various criticality and burnup benchmarks, the values of multiplication factor and isotope density were compared with the experiment data. Numerical results demonstrate the accuracy of the multigroup cross section library and the reliability of the multigroup cross section library generation system TPAMS.

Analysis of the Ease in Basic Bodice Pattern Using 3-D Measuring Instrument (3차원 계측장치를 이용한 길 원형의 여유량 분석)

  • Shim, Kue-Nam;Suh, Jung-Kwon;Lee, Won-Ja
    • Fashion & Textile Research Journal
    • /
    • v.2 no.3
    • /
    • pp.239-245
    • /
    • 2000
  • The purpose of this study was for analysis of ease about basic bodice pattern, as the first step of the research process for the drawing method of basic bodice for women in their twenties. The five selected basic bodice were made and they were worn by FRP body The garment space of each bodice was measured by analysis of the garment space of each section in figure of polymerization of cross section by a 3-D measuring instrument. The research suggests that this compared analysis is an objective reference. This analysis not only of the area of cross section of garment space and ease but also of the girth of the body shape and wearing shape, using the PAD system and 3-D measuring instrument, can be helpful in making garment patterns.

  • PDF

Development of Al Crash Box for High Crashworthiness Enhancement (고충돌에너지 흡수용 알루미늄 크래쉬박스 개발)

  • Yoo, J.S.;Kim, S.B.;Lee, M.Y.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.

On the Strength Analysis of the Stiffener with Asymmetric Cross Section (비대칭(非對稱) 단면(斷面) 보강재(補剛材)의 강도해석(强度解析))

  • S.J.,Yim;Y.S.,Yang;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 1980
  • In the conventional ship's structures, the stiffeners with asymmetric sections have been widely used, in spite of the disadvantage on the point of strength, compared to those with symmetric sections. So far, the stiffened plating was usually analyzed not considering the geometric unsymmetry characteristics of the section, including only the cross sectional area and moment of inertia. In this paper, the stiffened plating is devided into the strips having a thin-walled open cross section by using the concept of the effective width. The geometric characteristics of the sections are also included. The governing equations are derived, which can be applied to the arbitrary cross section beams, and the symmetric and the asymmetric section beams which have the same cross sectional areas are analyzed by using the finite element method. From that result, we obtain the allowable load of the two sections, and compared them.

  • PDF