DOI QR코드

DOI QR Code

Partial Photoionization Cross Section of Collinear eZe Helium: Numerical Confirmation of Semiclassical Predictions

  • Lee, Min-Ho (School of Liberal Arts and Teacher Training, Kumoh National Institute of Technology) ;
  • Choi, Nark Nyul (School of Liberal Arts and Teacher Training, Kumoh National Institute of Technology)
  • Received : 2018.08.16
  • Accepted : 2018.09.19
  • Published : 2018.11.30

Abstract

Based on the semiclassical theory of chaotic scattering, Tanner et al. [J. Phys. B 40, F157 (2007)] proposed the fluctuation in the partial photoionization cross section of helium below the double-ionization threshold would show the same characteristics as in the total cross section, predicting that the Fourier spectrum of the fluctuation reveals peaks at the classical actions of closed triple collision orbits and the amplitude of the fluctuation decreases algebraically as the energy approaches the double-ionization threshold. In that paper, however, the predictions were not clearly confirmed due to the lack of experimental data with sufficient accuracy. So instead, we calculate the partial photoionization cross sections of collinear eZe helium for the energy range from the single-ionization threshold $I_{20}$ to $I_{32}$ in order to numerically confirm the predictions. Analysis of the fluctuation in the partial cross section shows that the predictions are indeed valid. Our findings mean that the fluctuation in the partial photoionization cross section can be described by classical triple collision orbits in the semiclassical limit. Thus it explains in a natural way the mirroring and mimicking structures observed in cross section signals for different ionization channels.

Keywords

Acknowledgement

Supported by : Institute for Basic Science

References

  1. G. Tanner, K. Richter and J-M. Rost, Rev. Mod. Phys. 72, 497 (2000). https://doi.org/10.1103/RevModPhys.72.497
  2. C. Lin, Phys. Rep. 257, 1 (1995). https://doi.org/10.1016/0370-1573(94)00094-J
  3. M. Aymar, C. H. Greene and E. Luc-Koenig, Rev. Mod. Phys. 68, 1015 (1996). https://doi.org/10.1103/RevModPhys.68.1015
  4. M. A. Hayes and M. P. Scott, J. Phys. B: At. Mol. Opt. Phys. 21, 1499 (1988). https://doi.org/10.1088/0953-4075/21/9/010
  5. Z-S. Yuan, X-Y. Han, X-J. Liu, L-F. Zhu, K-Z. Xu, L. Voky and J-M. Li, Phys. Rev. A 70, 062706 (2004). https://doi.org/10.1103/PhysRevA.70.062706
  6. M. Chrysos, Y. Komninos, T. Mercouris and C. A. Nicolaides, Phys. Rev. A 42, 2634 (1990). https://doi.org/10.1103/PhysRevA.42.2634
  7. C. F. Fischer and M. Idrees, J. Phys. B: At., Mol. Opt. Phys. 23, 679 (1990). https://doi.org/10.1088/0953-4075/23/4/002
  8. I. Bray and A. T. Stelbovics, Phys. Rev. A 46, 6995 (1992). https://doi.org/10.1103/PhysRevA.46.6995
  9. I. Bray, D. V. Fursa, A. S. Kheifets and A. T. Stelbovics, J. Phys. B: At. Mol. Opt. Phys. 35, R117 (2002). https://doi.org/10.1088/0953-4075/35/15/201
  10. J. Colgan and M. S. Pindzola, Phys. Rev. Lett. 88, 173002 (2002). https://doi.org/10.1103/PhysRevLett.88.173002
  11. S. Laulan and H. Bachau, Phys. Rev. A 68, 013409 (2003). https://doi.org/10.1103/PhysRevA.68.013409
  12. S. X. Hu, J. Colgan and L. A. Collins, J. Phys. B: At. Mol. Opt. Phys. 38, L35 (2005). https://doi.org/10.1088/0953-4075/38/1/L05
  13. M. S. Pindzola, F. Robicheaux, S. D. Loch, J. C. Berengut, T. Topcu, J. Colgan, M. Foster, D. C. Griffin, C. P. Ballance, D. R. Schultz, T. Minami, N. R. Badnell, M. C. Witthoeft, D. R. Plante, D. M. Mitnik, J. A. Ludlow and U. Kleiman, J. Phys. B: At. Mol. Opt. Phy. 40, R39 (2007). https://doi.org/10.1088/0953-4075/40/7/R01
  14. J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schneider, L. A. Collins and J. Burgdorfer, Phys. Rev. A 77, 043420 (2008). https://doi.org/10.1103/PhysRevA.77.043420
  15. Y. Ho, Phys. Rep. 99, 1 (1983). https://doi.org/10.1016/0370-1573(83)90112-6
  16. M. Baertschy, T. N. Rescigno, W. A. Isaacs, X. Li and C. W. McCurdy, Phys. Rev. A 63, 022712 (2001). https://doi.org/10.1103/PhysRevA.63.022712
  17. P. L. Bartlett, J. Phys. B: At. Mol. Opt. Phys. 39, R379 (2006). https://doi.org/10.1088/0953-4075/39/22/R01
  18. L. Malegat, P. Selles and A. Kazansky, Phys. Rev. A 60, 3667 (1999). https://doi.org/10.1103/PhysRevA.60.3667
  19. L. Malegat, P. Selles and A. K. Kazansky, Phys. Rev. Lett. 85, 4450 (2000). https://doi.org/10.1103/PhysRevLett.85.4450
  20. D. R. Herrick and O. Sinanoglu, Phys. Rev. A 11, 97 (1975). https://doi.org/10.1103/PhysRevA.11.97
  21. M. Domke, K. Schulz, G. Remmers, G. Kaindl and D. Wintgen, Phys. Rev. A 53, 1424 (1996). https://doi.org/10.1103/PhysRevA.53.1424
  22. J. R. Harries, J. P. Sullivan, S. Obara, Y. Azuma, J. G. Lambourne, F. Penent, R. I. Hall, P. Lablanquie, K. Bucar, M. Zitnik and P. Hammond, J. Phys. B: At. Mol. Opt. Phys. 38, L153 (2005). https://doi.org/10.1088/0953-4075/38/10/L04
  23. R. Puttner, B. Gremaud, D. Delande, M. Domke, M. Martins, A. S. Schlachter and G. Kaindl, Phys. Rev. Lett. 86, 3747 (2001). https://doi.org/10.1103/PhysRevLett.86.3747
  24. A-T. Le, T. Morishita, X-M. Tong and C. D. Lin, Phys. Rev. A 72, 032511 (2005). https://doi.org/10.1103/PhysRevA.72.032511
  25. Y. H. Jiang, R. Puttner, D. Delande, M. Martins and G. Kaindl, Phys. Rev. A 78, 021401 (2008). https://doi.org/10.1103/PhysRevA.78.021401
  26. A. Czasch, M. Schoer, M. Hattass, S. Schossler, T. Jahnke, T. Weber, A. Staudte, J. Titze, C. Wimmer, S. Kammer, M. Weckenbrock, S. Voss, R. E. Grisenti, O. Jagutzki, L. P. H. Schmidt, H. Schmidt-Bocking, R. Dorner, J. M. Rost, T. Schneider, C-N. Liu, I. Bray, A. S. Kheifets and K. Bartschat, Phys. Rev. Lett. 95, 243003 (2005). https://doi.org/10.1103/PhysRevLett.95.243003
  27. H. Friedrich and H. Wintgen, Phys. Rep. 183, 37 (1989). https://doi.org/10.1016/0370-1573(89)90121-X
  28. B. Gremaud and P. Gaspard, J. Phys.B: At. Mol. Opt. Phys. 31, 1671 (1998). https://doi.org/10.1088/0953-4075/31/8/017
  29. N. N. Choi, M-H. Lee and G. Tanner, Phys. Rev. Lett. 93, 054302 (2004). https://doi.org/10.1103/PhysRevLett.93.054302
  30. M-H. Lee, G. Tanner and N. N. Choi, Phys. Rev. E 71, 056208 (2005). https://doi.org/10.1103/PhysRevE.71.056208
  31. C. W. Byun, N. N. Choi, M-H. Lee and G. Tanner, Phys. Rev. Lett. 98, 113001 (2007). https://doi.org/10.1103/PhysRevLett.98.113001
  32. M-H. Lee, C. W. Byun, N. N. Choi and G. Tanner, Phys. Rev. A 81, 043419 (2010). https://doi.org/10.1103/PhysRevA.81.043419
  33. G. Tanner, N. N. Choi, M-H. Lee, A. Czasch and R. Dorner, J. Phys. B: At. Mol. Opt. Phys. 40, F157 (2007). https://doi.org/10.1088/0953-4075/40/8/F01
  34. G. H. Wannier, Phys. Rev. 90, 817 (1953). https://doi.org/10.1103/PhysRev.90.817
  35. M-H. Lee, C. Byun, N. N. Choi and G. Tanner, to be published in J. Phys. B .
  36. C-N. Liu and A. F. Starace, Phys. Rev. A 59, R1731 (1999). https://doi.org/10.1103/PhysRevA.59.R1731
  37. T. Schneider, C-N. Liu and J-M. Rost, Phys. Rev. A 65, 042715 (2002). https://doi.org/10.1103/PhysRevA.65.042715
  38. T. Prosen, J. Phys. A: Math. Gen. 28, 4133 (1995). https://doi.org/10.1088/0305-4470/28/14/029
  39. R. O. Vallejos and A. M. O. de Almeida, Annals of Physics 278, 86 (1999). https://doi.org/10.1006/aphy.1999.5964
  40. N. N. Choi and M-H. Lee, J. Korean Phys. Soc. 56, 1799 (2010). https://doi.org/10.3938/jkps.56.1799
  41. F. Mruga la and D. Secrest, J. Chem. Phys. 78, 5954 (1983). https://doi.org/10.1063/1.444610
  42. F. Mruga la and D. Secrest, J. Chem. Phys. 79, 5960 (1983). https://doi.org/10.1063/1.445778
  43. F. Mrugala, Int. Rev. Phys. Chem. 12, 1 (1993). https://doi.org/10.1080/01442359309353277
  44. U. Fano, Rep. Prog. Phys. 46, 97 (1983). https://doi.org/10.1088/0034-4885/46/2/001
  45. F. Mruga la and J. Romelt, Chem. Phys. 118, 295 (1987). https://doi.org/10.1016/0301-0104(87)87046-5
  46. O. I. Tolstikhin, S. Watanabe and M. Matsuzawa, J. Phys. B: At. Mole. Opt. Phys. 29, L389 (1996). https://doi.org/10.1088/0953-4075/29/11/001
  47. H. Friedrich, Theoretical Atomic Physics, 2nd ed. (Springer-Verlag Berlin Heidelberg, 1998).
  48. C. Rouvinez and U. Smilansky, J. Phys. A: Math. Gen. 28, 77 (1995). https://doi.org/10.1088/0305-4470/28/1/014
  49. U. Fano and A. Rau, Atomic collisions and spectra (Academic Press, 1986).
  50. E. B. Bogomolny, Nonlinearity 5, 805 (1992). https://doi.org/10.1088/0951-7715/5/4/001
  51. E. Doron and U. Smilansky, Nonlinearity 5, 1055 (1992). https://doi.org/10.1088/0951-7715/5/5/003
  52. H. Bachau, E. Cormier, P. Decleva, J. E. Hansen and F. Martn, Rep. Prog. Phys. 64, 1815 (2001). https://doi.org/10.1088/0034-4885/64/12/205
  53. B. R. Johnson, J. Chem. Phys. 69, 4678 (1978). https://doi.org/10.1063/1.436421