DOI QR코드

DOI QR Code

Development of multigroup cross section library generation system TPAMS

  • Lili Wen (China Institute of Atomic Energy, China Nuclear Data Center) ;
  • Haicheng Wu (China Institute of Atomic Energy, China Nuclear Data Center) ;
  • Ying Chen (China Institute of Atomic Energy, China Nuclear Data Center) ;
  • Xiaoming Chai (Nuclear Power Institute of China) ;
  • Xiaofei Wu (China Institute of Atomic Energy, China Nuclear Data Center) ;
  • Xiaolan Tu (Nuclear Power Institute of China) ;
  • Yuan Liu (Nuclear Power Institute of China)
  • Received : 2023.10.12
  • Accepted : 2024.01.18
  • Published : 2024.06.25

Abstract

Kylin-2 is an advanced neutronics lattice code, developed by Nuclear Power Institute of China. High-precision multigroup cross section library is need for KYLIN-2 to carry out simulation of current pressurized water reactor (PWR) and advanced reactor. In this paper a multigroup cross section library generation system named TPAMS was developed, the methods in TPAMS dealing with resonance data such as subgroup parameters, lambda factor, resonance integral were discussed. Moreover, the depletion chain simplification method was studied. TPAMS can produce multigroup library in binary and ASIIC formats, including detailed data contents for resonance, transport and depletion calculations. A multigroup cross section library has been generated for KYLIN-2 based on TPAMS system. The multigroup cross section library was verified through the analysis of various criticality and burnup benchmarks, the values of multiplication factor and isotope density were compared with the experiment data. Numerical results demonstrate the accuracy of the multigroup cross section library and the reliability of the multigroup cross section library generation system TPAMS.

Keywords

Acknowledgement

This work is supported by National Natural Science Foundation Project (No. 12205380).

References

  1. Xiaoming Chai, Xiaolan Tu, Wei Lu, et al., The powerful method of characteristics module in advanced neutronics lattice code KYLIN-2, J. Nucl. Eng. Radiat. Sci. 3 (2017), 031004-1 - 031004-9.
  2. Yuying Hu, Honghuan Liao, Luo Qi, et al., Study on an improved burnup algorithm in Kylin-2 code, Ann. Nucl. Energy 153 (2021) (2021) 108034, 1-10.
  3. Pingzhou Ming, Junjie Pan, Xiaolan Tu, et al., The Linear System Solver of Programs Named Corth and KYLIN2, Proceedings of the 2017 25th International Conference on Nuclear Engineering, ICONE25, Shanghai, China, 2017. July 2-6.
  4. R. Stamm'ler, HELIOS Methods, Studsvik Scandpower, 2008.
  5. R. Lopez Aldama, F. Leszczynski, A. Trkov, WIMS-D Library Update, Final Report of a Coordinated Research Project, International Atomic Energy Agency, 2003.
  6. G. Marleau, A. Hebert, R. Roy, A User Guide for DRAGON Version 5, Ecole Polytechnique, Montreal, Canada, 2013.
  7. R. Sanchez, J. Mondot, A. Cossic, et al., Apollo II: a user-oriented, portable, modular code for multigroup transport assembly calculations, Nucl. Sci. Eng. 100(3) (1988) 352-362.
  8. J. Chen, Z. Liu, C. Zhao, et al., A new high-fidelity neutronics code NECP-X, Ann. Nucl. Energy 116 (2018) 417-428.
  9. E.R. Macfarlane, C.A. Kahler, W.D. Muir, et al., The NJOY Nuclear Data Processing System, Los Alamos National Security, 2012. Version 2012[R].
  10. J. Sublet, P. Ribon, M. Coste-Delclaux, CALENDF-2010: User Manual, Commissariata l'energie atomique, 2011. CEA-R-6277.
  11. M.N. Nikolaev, A.A. Ignatov, n v Isaev, et al., The method of subgroups for considering the resonance structure of cross sections in neutron calculations, Atom. Energy 30 (5) (1971) 528-533.
  12. A. Hebert, M. Coste, Computing moment-based probability tables for self-shielding calculations in lattice codes, Nucl. Sci. Eng. 142 (3) (2002) 245-257.
  13. O. Safarzadeh, A.S. Shirani, A. Minuchehr, Resonance self-shielding calculation using subgroup method and ABC algorithm, Prog. Nucl. Energy 78 (2015) 303-309.
  14. Li Song, Qian Zhang, Zhijian Zhang, et al., Improved subgroup method coupled with particle swarm optimization algorithm for intra-pellet non-uniform temperature, Ann. Nucl. Energy 153 (2021) (2021) 108070.
  15. Q. Zhang, Q. Zhao, Z. Zhang, et al., Investigation on the heterogeneous resonance integral in the embedded self-shielding method, Ann. Nucl. Energy 120 (2018) 485-500.
  16. R. Katano, A. Yamamoto, T. Endo, Generation of Simplified Burnup Chain Using Contribution Matrix of Nuclide Production, PHYSOR 2014, Kyoto, Japan, 2014. September 28-October 3.
  17. Takanori Kajihara, Masashi Tsuji, Go Chiba, et al., Automatic Construction of a Simplified Burn-Up Chain Model by the Singular Value Decomposition, PHYSOR 2014, Kyoto, Japan, 2014. September 28-October 3.
  18. Go Chiba, Masashi Tsuji, Tadashi Narabayashi, Important Fission Product Nuclide Identification Method for Simplified Burnup Chain Construction, PHYSOR 2014, Kyoto, Japan, 2014. September 28-October 3.
  19. Kai Huang, Hongchun Wu, Yunzhao Li, et al., Generalized Depletion Chain Simplification Based on Significance Analysis, PHYSOR2016, Sun Valley, America, 2016. May 1-6.
  20. Radha Thangaraj, Millie Pant, Ajith Abraham, A Simple Adaptive Differential Evolution Algorithm, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009, 09-11 December.
  21. J. Cetnar, A Method of Transmutation Trajectories Analysis in Accelerator Driven system[R], Proceedings of the IAEA Technical Committee Meeting on Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation, Madrid, 1997, 17-19 September.
  22. A.A. Sonzogni, NuDa 2.0: Nuclear Structure and Decay Data on the Internet, International Conference on Nuclear Data for Science and Technology, 2005.
  23. M. Herman, A. Trkov, ENDF-6 Format Manual Data Format and Procedures for the Evuluated Nuclear Data File ENDF/B-VI and ENDF/B-VII[Report], Brookhaven National Laboratory, New York, 2009.
  24. International Handbook of Evaluated Criticality Safety Benchmark Experiments, OECD NEA, Paris, 2016. NEA/NSC/DOC (95)03/I-VIII.
  25. Akio Yamamoto, Tadashi Ikehara, Takuya Ito, Etsuro Saji, Benchmark problem suite for reactor physics study of LWR next generation fuels, J. Nucl. Sci. Technol. 39 (8) (2002) 900-912.
  26. Yoshinori Nakahara, Kenya Suyama, Takenori Suzaki, Translation of Technical Development on Burn-Up Credit for Spent LWR Fuels, Oak Ridge National Laboratory, 2002. JAERI-Tech 2000-071(ORNL/TR-2001/01).
  27. Li Deng, Tao Ye, Gang Li, et al., 3-D Monte Carlo Neutron-Photon Transport Code JMCT and its Algorithms, PHYSOR 2014, Kyoto, Japan, 2014. September 28-October 3.
  28. Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor. Oak Ridge National Laboratory. NUREG/CR-6798, ORNL/TM-2001/259.