• 제목/요약/키워드: Critical properties

검색결과 2,286건 처리시간 0.035초

Microstructural properties of Pt-doped $YBa_{2}Cu_{3}O_{7-x}$ high $T_c$ superconductor prepared by melting method.

  • Song, Jin-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1992년도 추계학술발표강연 및 논문개요집
    • /
    • pp.16-16
    • /
    • 1992
  • We have studied the effect of platinum addition on the supercon ducting properties of YB $a_2$C $u_3$$O_{7-x}$ (123) compound and elucidated the mechanism of fine dispersion of $Y_2$BaCu $O_{5}$(211) particles in YB $a_2$C $u_3$$O_{7-x}$ superconductor prepared by melting method from the metallurgical point of view. In this study, BaCu $O_2$ and CuO-rich phase unreacted during the peritecitc reaction markedly decreased by the 211 powder addition. The 211 particle of Pt-fee sintered samples exhibited 8~10$\mu$m in size, but in 1wt%Pt-added sample, 211 particles were finely dispersed in 123 matrix and the size of 211 particle was about 1~2$\mu$m. And, the critical temperature( $T_{c. zero}$) of Pt doped samples was 91.5K and the transport critical current density ( $J_{c}$) of Pt-doped samples was much more than 10$^4$A/$\textrm{cm}^2$. The high $J_{c}$ and fine dispersion of 211 particles of Pt doped YB $a_2$C $u_3$$O_{7-x}$ superconductor are attributed to $Ba_4$CuP $t_2$ $O_{8}$ compounds formed during the partial melting, which were considered als nucleation sites of 211 particles, rather than Pt inself.han Pt inself.

  • PDF

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

An experimental study on shear mechanical properties of clay-concrete interface with different roughness of contact surface

  • Yang, Wendong;Wang, Ling;Guo, Jingjing;Chen, Xuguang
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.39-50
    • /
    • 2020
  • In order to understand the shear mechanical properties of the interface between clay and structure and better serve the practical engineering projects, it is critical to conduct shear tests on the clay-structure interface. In this work, the direct shear test of clay-concrete slab with different joint roughness coefficient (JRC) of the interface and different normal stress is performed in the laboratory. Our experimental results show that (1) shear strength of the interface between clay and structure is greatly affected by the change of normal stress under the same condition of JRC and shear stress of the interface gradually increases with increasing normal stress; (2) there is a critical value JRCcr in the roughness coefficient of the interface; (3) the relationship between shear strength and normal stress can be described by the Mohr Coulomb failure criterion, and the cohesion and friction angle of the interface under different roughness conditions can be calculated accordingly. We find that there also exists a critical value JRCcr for cohesion and the cohesion of the interface increases first and then decreases as JRC increases. Moreover, the friction angle of the interface fluctuates with the change of JRC and it is always smaller than the internal friction angle of clay used in this experiment; (4) the failure type of the interface of the clay-concrete slab is type I sliding failure and does not change with varying JRC when the normal stress is small enough. When the normal stress increases to a certain extent, the failure type of the interface will gradually change from shear failure to type II sliding failure with the increment of JRC.

소닉노즐을 이용한 천연가스 유량측정에서 임계유동인자 계산 및 국제비교 결과 (Evaluation of Critical Flow Factor in Natural Gas Flow Measurement Using Sonic Nozzle and International Comparison Results)

  • 하영철;허재영
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.911-917
    • /
    • 1999
  • The sonic nozzle is widely used as reference device for calibrating flowmeters In gas flow measurement and its use requires the Critical Flow Factor(CFF) based on the thermodynamic properties of the gas at the nozzle throat. ISO-9300 provides the calculating method of the factor. But since the CFF from this method show an error over ${\pm}0.5%$ In specific conditions and of ${\pm}0.1{\sim}{\pm}0.2%$ in common Natural Gas(NG) custody transfer condition. this method cannot be applied for gas flow measurement with sonic nozzle. Each research bodies or organizations of the world have joined in order to calculate the CFF more accurately. They have performed these works using their own method and compared the results with each other under the management of ISO. KOGAS have joined those works, because the high-pressure natural gas flow calibration facility of KOGAS will be constructed in late 1999, and then had necessities to calculate a CFF accurately. The calculation method of KOGAS was using the equation of state from AGA-8('94), high accuracy model of ideal gas properties and the solutions of thermodynamic equations. The evaluation results have had a very good consistency within ${\pm}0.05%$ in most NO custody transfer conditions compared to the speed of sound for methane and also shown that the CFF was within ${\pm}0.1%$ compared to the results of other works of the world.

Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma

  • Qi, Peng;Wei, Chunhua;Kou, Dianbo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권6호
    • /
    • pp.555-564
    • /
    • 2021
  • We investigated the effects of naringenin and morin on IL-5 and ROS production in PMA+ionomycin-treated EL-4 cells with the corroboration of their antioxidant and anti-inflammatory properties using an asthma-induced mouse model. The EL-4 cell line was used to study the outcomes of naringenin or morin, followed by cell viability studies. Western blot analysis and ELISA test were used to determine Th2 mediated cytokines. In vivo studies were carried out on BALB/c mice to induce allergic asthma using ovalbumin administered intraperitoneally. Intracellular ROS was determined using 2',7'-dichlorodihydrofluorescein diacetate, followed by serum enzymatic (AST and ALT) estimations and inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and lung tissues. Histopathological studies were conducted to examine lung tissue-stained architecture. Our findings suggested that naringenin and morin significantly suppressed IL-5 and ROS production via various pathways. Interestingly, by reducing NFAT activity, naringenin and morin stimulated HO-1 expression, thereby suppressing IL-5 secretion due to regulating the transcription factor Nrf2 via P13/Akt or ERK/JNK signalling pathways in EL-4 cells, demonstrating the involvement of HO-1 expression in inhibiting asthmatic inflammation. The increased inflammatory cells in the BALF were substantially decreased by both naringenin and morin, followed by inhibition in the elevated Th-2 cytokines levels. The TNF-α protein levels in an allergic asthma mouse model were significantly reduced by suppressing Akt phosphorylation and eosinophil formation. Recent findings confirmed that naringenin and morin possess the potential to control asthma-related immune responses through antioxidant and anti-inflammatory properties, indicating potential therapeutic agents or functional foods.

Transport properties of polycrystalline TaNx thin films prepared by DC reactive magnetron sputtering method

  • Hwang, Tae Jong;Jung, Soon-Gil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권2호
    • /
    • pp.1-5
    • /
    • 2021
  • We have investigated the electrical transport properties of polycrystalline tantalum nitride (TaNx) films. Various compositions of tantalum (nitride) thin films have been deposited on SiO2 substrates by reactive DC magnetron sputtering while changing the ratio of nitrogen partial pressure. The substrate temperature was maintained at 283 K during deposition. X-ray diffraction analyses indicated the presence of α-Ta and β-Ta phases in the Ta film deposited in pure argon atmosphere, while fcc-TaNx phases appeared in the sputtering gas mixture of argon and nitrogen. The N/Ta atomic ratio in the film increased ranging from 0.36 to 1.07 for nitrogen partial pressure from 7 to 20.7%. The superconducting transition temperatures of the TaNx thin films were measured to be greater than 3.86 K with a maximum of 5.34 K. The electrical resistivity of TaNx thin film was in the range of 177-577 𝜇Ωcm and increased with an increase in nitrogen content. The upper critical filed at zero temperature for a TaN0.87 thin film was estimated to exceed 11.3 T, while it showed the lowest Tc = 3.86 K among the measured superconducting TaNx thin films. We try to explain the behavior of the increase of the residual resistivity and the upper critical field for TaNx thin films with the nitrogen content by using the combined role of the intergrain Coulomb effect and disorder effect by grain boundaries.

Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor

  • Khan, Zahoor;Shafique, Maryam;Zeb, Amir;Jabeen, Nusrat;Naz, Sehar Afshan;Zubair, Arif
    • 한국미생물·생명공학회지
    • /
    • 제49권1호
    • /
    • pp.65-74
    • /
    • 2021
  • Serine proteases are the most versatile proteolytic enzymes with tremendous applications in various industrial processes. This study was designed to investigate the biochemical properties, critical residues, and the catalytic potential of alkaline serine protease using in-silico approaches. The primary sequence was analyzed using ProtParam, SignalP, and Phyre2 tools to investigate biochemical properties, signal peptide, and secondary structure, respectively. The three-dimensional structure of the enzyme was modeled using the MODELLER program present in Discovery Studio followed by Molecular Dynamics simulation using GROMACS 5.0.7 package with CHARMM36m force field. The proteolytic potential was measured by performing docking with casein- and keratin-enriched residues, while the effect of the inhibitor was studied using phenylmethylsulfonyl fluoride, (PMSF) applying GOLDv5.2.2. Molecular weight, instability index, aliphatic index, and isoelectric point for serine protease were 39.53 kDa, 27.79, 82.20 and 8.91, respectively. The best model was selected based on the lowest MOLPDF score (1382.82) and DOPE score (-29984.07). The analysis using ProSA-web revealed a Z-score of -9.7, whereas 88.86% of the residues occupied the most favored region in the Ramachandran plot. Ser327, Asp138, Asn261, and Thr326 were found as critical residues involved in ligand binding and execution of biocatalysis. Our findings suggest that bioengineering of these critical residues may enhance the catalytic potential of this enzyme.

정온전선의 화재 위험성에 관한 연구 (A Study on the Fire Risk for Self-regulating Heating Cable)

  • 이정현;김시현;박예진;강신동;김재호
    • 한국안전학회지
    • /
    • 제39권3호
    • /
    • pp.7-13
    • /
    • 2024
  • This study examines the physical characteristics of self-regulating heating cables caused by increased temperature and fire risk due to local degradation. A thermo hygrostat system, a convection dryer, a digital multimeter (Agilent 34465 A), NI DAQ, and the LabVIEW program were used to assess the physical properties in response to temperature fluctuations. As the temperature increases, the resistance of the self-regulating heating cable increases; however, when the critical point is exceeded, the resistance sharply decreases. A problem arises when the resistance value cannot return to its original state even though the temperature is lowered to the initial state. Moreover, when the ambient temperature rises while power is applied, the resistance value initially increases, and the flowing current decreases, maintaining a constant state. However, when the critical temperature is exceeded, the flowing current increases because of a rapid decrease in the resistance value, progressing to ignition. When the resistance value decreases because of the deterioration of one local area, the total resistance value becomes less than the initial resistance value. Therefore, the flowing current increases and an ignition problem occurs at one location where deterioration occurs. Despite the sustained flames and arcs resulting from the changes in the overall physical properties of the self-regulating heating cable and resistance variations due to local decline, the fire continued as the flowing current was lower than the operating current of the circuit breaker, failing to cut the power. In the case of self-regulating heating cables and heating wires, which are the leading causes of fires in winter, efforts are needed to ensure the need for periodic maintenance and the use of KS-certified products.

마이크로 역학과 레올로지 제어에 의한 고인성 섬유복합재료 ECC(Engineered Cementitious Composite)의 다양한 타설 공정 구현 (Facilitation of the Diverse Processing of High Ductile ECC (Engineered Cementitious Composite) Based on Micromechanics and Rheological Control)

  • 김윤용;김정수
    • 한국농공학회논문집
    • /
    • 제47권5호
    • /
    • pp.27-39
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced ECC (engineered cementitious composite), optimizing both processing and mechanical properties for specific applications is critical. This study presents an innovative method to develop new class ECCs, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or shotcrete processing) while maintaining ductile hardened properties. In the material design concept, we employ a parallel control of fresh and hardened properties by using micromechanics and cement rheology. Control of colloidal interaction between the particles is regarded as a key factor to allow the performance of the specific processing. To determine how to control the particle interactions and the viscosity of cement suspension, we first introduce two chemical admixtures including a highly charged polyelectrolyte and a non-ionic polymer. Optimized mixing steps and dosages we, then, obtained within the solid concentration predetermined based on micromechanical principle. Test results indicate that the rheological properties altered by this approach were revealed to be highly effective in obtaining the desired function of the fresh ECC, allowing us to readily achieve hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • 제4권5호
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.