Microstructural properties of Pt-doped YBa₂Cu₃O_{7-X} high T_c superconductor prepared by melting method. Jin-Tae Song Dept. of Materials Engineering, Hanyang University, SEOUL, 133-791 KOREA ## Abstract We have studied the effect of platinum addition on the superconducting properties of YBa₂Cu₃O_{7-X}(123) compound and elucidated the mechanism of fine dispersion of Y₂BaCuO₅(211) particles in YBa₂Cu₃O_{7-X} superconductor prepared by melting method from the metallurgical point of view. In this study, BaCuO₂ and CuO-rich phase unreacted during the peritectic reaction markedly decreased by the 211 powder addition. The 211 particle of Pt-free sintered samples exhibited 8~10 μ m in size, but in lwt%Pt-added sample, 211 particles were finely dispersed in 123 matrix and the size of 211 particle was about 1~2 μ m. And, the critical temperature(T_{c, zero}) of Pt doped samples was 91.5K and the transport critical current density (J_c) of Pt-doped samples was much more than 10⁴ A/cm². The high J_c and fine dispersion of 211 particles of Pt doped YBa₂Cu₃O_{7-X} superconductor are attributed to Ba₄ CuPt₂O₈ compounds formed during the partial melting, which were considered as nucleation sites of 211 particles, rather than Pt itself. ## Key word: 211 precursor Ba₄CuPt₂O₈ compound critical current density(J_c) nucleation site partial melting