• Title/Summary/Keyword: Core2

Search Result 8,225, Processing Time 0.036 seconds

Evaluations of Swaging Process for Rotor Core of Induction Motors (유도전동기 회전자 제작시 압입작업 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.21-26
    • /
    • 2016
  • This study evaluates the magnitudes and distributions of contact tangential forces with the swaging depth of punch acting at the contact surfaces between a rotor core slot and a Cu bar during a sequential rotor core swaging process. The effects of the core slot shape on the magnitudes and distributions of the total contact forces were investigated to improve the productivity of the rotor core swaging process. Parametric elastic-plastic numerical analyses were performed using simplified two-dimensional cyclic symmetric plane strain models to evaluate the contact force distributions at the contact surfaces. The numerical analysis results show that the total contact tangential forces increased by about 55% with the adjacent Cu bar swaging process. The length of the core slot is a dominant factor in the core slot design as result of the increased total contact tangential forces during the swaging process of the rotor core.

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

Suppression of Ceramide-induced Cell Death by Hepatitis C Virus Core Protein

  • Kim, Jung-Su;Ryu, Ji-Yoon;Hwang, Soon-Bong;Lee, Soo-Young;Choi, Soo-Young;Park, Jin-Seu
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.192-198
    • /
    • 2004
  • The hepatitis C virus (HCV) core protein is believed to be one of viral proteins that are capable of preventing virus-infected cell death upon various stimuli. But, the effect of the HCV core protein on apoptosis that is induced by various stimuli is contradictory. We examined the possibility that the HCV core protein affects the ceramide-induced cell death in cells expressing the HCV core protein through the sphingomyelin pathway. Cell death that is induced by $C^2$-ceramide and bacterial sphingomyelinase was analyzed in 293 cells that constitutively expressed the HCV core protein and compared with 293 cells that were stably transfected only with the expression vector. The HCV core protein inhibited the cell death that was induced by these reagents. The protective effects of the HCV core protein on ceramide-induced cell death were reflected by the reduced expression of $p21^{WAF1/Cip1/Sid1}$ and the sustained expression of the Bcl-2 protein in the HCV core-expressing cells with respect to the vector-transfected cells. These results suggest that the HCV core protein in 293 cells plays a role in the modulation of the apoptotic response that is induced by ceramide. Also, the ability of the HCV core protein to suppress apoptosis might have important implications in understanding the pathogenesis of the HCV infection.

Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property (복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.423-428
    • /
    • 2014
  • We synthesized Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at $500^{\circ}C$ exhibited core/shell NWs consisting of $TiO_2$ in the core region and ${\alpha}-Fe_2O_3$ in the shell region. In addition, the XPS results confirmed the formation of Fe-doped $TiO_2$ by the doping effect of $Fe^{3+}$ ions into the $TiO_2$ lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure ${\alpha}-Fe_2O_3$ NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure ${\alpha}-Fe_2O_3$ NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the $TiO_2$ lattice, the size effect of the $Fe_2O3_$ nanoparticles, and the structural effect of the core-shell nanostructures.

Preparation of Alkyl Acrylate and Functional Monomer Multi Core-Shell Composite Particles (알킬 아크릴레이트와 관능성 단량체계 다중 Core-Shell 복합입자의 제조)

  • Choi, Sung-Il;Cho, Dae-Hoon;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA) and shell monomers such as MMA, EMA, 2-hydroxyl ethyl methacrylate (2-HEMA), glycidyl methacrylate (GMA) and methacrylic acid (MAA) in the presence of different concentrations of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, contact angle after plasma treatment, tensile strength and isothermal decomposition kinetics. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(EMA/GMA) shell composite particles was excellent as 98.5%. In the case of the concentration of 0.03 wt% SDBS, the particle size of EMA core-(MMA/GMA) shell composite particles was high as $0.48{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 1~2 points of glass transition temperatures appear for general copolymer particles. Overall, the adhesion strength of shell composite particles was in the order of EMA/MAA > EMA/2-HEMA > EMA/GMA.

Preparation and Application of Microcapsule - Preparation and Properties of Suspension-Polymerized Poly(vinyl alcohol) Microsphere with Core-Shell Structure - (마이크로캡슐의 제조와 응용 - 분산중합에 의한 core/shell 구조를 지닌 Poly(vinyl alcohol) Microsphere의 제조와 특성 -)

  • 김혜인;김효정;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2003
  • Poly(ethylene-co-vinylacetate) (EVA) microspheres were prepared by a thermally induced phase separation. Poly(vinyl Alcohol) (EVAL) microsphere with Core-Shell Structure were synthesized by a saponification on sheath of EVA microspheres. The size of EVA core/EVAL shell microsphere was decreased from $4.09\mu{m}\;to\;2.55\mu{m}$ by partial saponification of $NaOH/Na_2SO_4$/methanol(2 : 1 : 1 by weight) at $60^\circ{C}$ for 4h to produce a saponified surface layer of about 60% of original radius. In this process, the surface layer of EVAL microsphere was dissolved partially and morphology of surface was not showed. Add-on of cotton and silk printed with EVA core/EVAL shell microsphere was increased and that of printed PET was decreased. In case of EVA core/EVAL shell microsphere, Hand of cotton and silk printed was flexible and fullness.

A Performance Study on Many-core Processor Architectures with SPEC Benchmark Programs (SPEC 벤치마크 프로그램에 대한 매니코어 프로세서의 성능 연구)

  • Lee, Jongbok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.252-256
    • /
    • 2013
  • In order to overcome the complexity and performance limit problems of superscalar processors, the multi-core architecture has been prevalent recently. Usually, the number of cores mostly used for the multi-core processor architecture ranges from 2 to 16. However in the near future, more than 32-cores are likely to be utilized, which is called as many-core processor architecture. Using SPEC 2000 benchmarks as input, the trace-driven simulation has been performed for the 32 to 1024 many-core architectures extensively. For 1024-cores, the average performance scores 15.7 IPC, but the performance increase rate is saturated.

Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting (자동차 실린더 블록 주조에서 워터 자켓용 샌드 코어 특성에 영향을 미치는 인자)

  • Kim, Ki-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2021
  • The characteristics of the foundry sand were analyzed for water jacket core required to prevent structural deformation from the heat generated in the cylinder bore during the casting of the cylinder block of an automobile. The sand core tensile strength tester, AFS-GFN, and optical microscope were used to evaluate the its properties. If the SiO2 content is high in the foundry sand, the dimensional defects and veining defects occur due to high temperature expansion. Also, if it is too low, the core breakage, porosities, chemical burn-on defects occur. The particle size index and grain shape influenced the core strength and resin consumption, resulting in fluctuations in defect types. The higher the alkalinity of the dried sand, the lower the core strength. And the more basic, the lower the core strength. At the resin content of 1.6~1.8%, the increase in core strength after 1 hour curing was approximately at its maximum.

Manufacture of Alkyl Acrylate Multi Core-shell Composite Particle (알킬 아크릴레이트계의 다중 Core-shell 복합입자의 제조)

  • Cho, Dae-Hoon;Choi, Sung-Il;Go, Hyun-Mi;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.16-25
    • /
    • 2011
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomer such as methyl methacrylate (MMA), n-butyl methacrylate (BMA), and shell monomer such as MMA, BMA, stylene (St), 2-hydroxyl ethyl methacrylate (2-HEMA) and acrylic acid (AA) in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, morphology, tensile strength and elongation. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(BMA/St/AA) shell composite particle was excellent as 98%. In the case of the concentration of 0.03 wt% SDBS, the particle size of BMA core-(MMA/St/AA) shell composite particle was high as $0.47{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 2 points of glass transition temperatures appear for general core-shell composite particles. We showed that it is possible to adjust glass transition temperatures according to the kind and composition of the inner shell monomer that it is can be used as a adhesive binder material with improved adhesive power.