DOI QR코드

DOI QR Code

Manufacture of Alkyl Acrylate Multi Core-shell Composite Particle

알킬 아크릴레이트계의 다중 Core-shell 복합입자의 제조

  • Cho, Dae-Hoon (Department of Chemical Engineering, Dong-A University) ;
  • Choi, Sung-Il (Department of Chemical Engineering, Dong-A University) ;
  • Go, Hyun-Mi (Department of Chemical Engineering, Dong-A University) ;
  • Seul, Soo-Duk (Department of Chemical Engineering, Dong-A University)
  • 조대훈 (동아대학교 공과대학 화학공학과) ;
  • 최성일 (동아대학교 공과대학 화학공학과) ;
  • 고현미 (동아대학교 공과대학 화학공학과) ;
  • 설수덕 (동아대학교 공과대학 화학공학과)
  • Received : 2011.02.07
  • Accepted : 2011.03.08
  • Published : 2011.03.30

Abstract

Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomer such as methyl methacrylate (MMA), n-butyl methacrylate (BMA), and shell monomer such as MMA, BMA, stylene (St), 2-hydroxyl ethyl methacrylate (2-HEMA) and acrylic acid (AA) in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, morphology, tensile strength and elongation. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(BMA/St/AA) shell composite particle was excellent as 98%. In the case of the concentration of 0.03 wt% SDBS, the particle size of BMA core-(MMA/St/AA) shell composite particle was high as $0.47{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 2 points of glass transition temperatures appear for general core-shell composite particles. We showed that it is possible to adjust glass transition temperatures according to the kind and composition of the inner shell monomer that it is can be used as a adhesive binder material with improved adhesive power.

Core 입자로 methyl methacrylate (MMA), n-butyl methacrylate (BMA)를 하고 shell 입자로 MMA, BMA, stylene (St), 2-hydroxylethylmethacrylate (2-HEMA), acrylic acid (AA)를 각각 사용하여 개시제 aommonium persulfate (APS), 유화제로 sodium dodecyl benzene sulfonate (SDBS)의 농도(0.01~0.03 wt%), 단량체의 종류와 조성을 변화시켜 수용성 유화중합으로 다중 core-shell 복합입자를 제조하여 전화율, 입자경 및 입도 분포, 평균 분자량, 분자구조, 유리전이온도, 입자의 형태 및 인장강도와 신율을 각각 측정하여 다음과 같은 결론을 얻었다. SDBS 농도 0.02 wt%에서 MMA core-(BMA/St/AA) shell 복합인자가 전화율이 98%로 우수하였고, 입자 직경은 SDBS 농도 0.03 wt%에서 BMA core-(MMA/St/AA) shell의 복합입자가 $0.47{\mu}m$로 높게 나왔다. 유리전이온도 측정은 단일 core-shell 복합입자의 2군데에 비하여 다중 core-shell 복합입자는 3군데가 존재하여 shell단량체 내의 단량체의 종류와 조성에 따라 유리전이온도 조절도 가능하고 동시에 접착력이 향상된 접착소재로서 부직포 섬유 결속제로 사용될 수 있었다.

Keywords

References

  1. D. H. Sim and S. D. Seul, Polymer, 32, 276 (2008).
  2. S. R. Lee and S. D. Seul, Korean J. Chem. Emg., 19, 318 (2002). https://doi.org/10.1007/BF02698422
  3. W. W. Mooncai, Adhesive Age, 31, 33 (1998).
  4. P. Tosdjeman and E. Papon, J. Appl. Polymer. Sci., 38, 1201 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000501)38:9<1201::AID-POLB12>3.0.CO;2-#
  5. S. D. Seul and J. M. Lim, Polymer, 28, 135 (2004).
  6. D. H. Sim and S. D. Seul, Polymer, 32, 433 (2008).
  7. D. H. Sim and S. D. Seul, Polymer, 33, 45 (2009).
  8. D. H. Sim and S. D. Seul, Polymer, 33, 230 (2009).
  9. M. Okubo, A. Yamada, and T. Matsumoto, J. Polym. Sci. Polym. Letters. Ed., 18, 3219 (1980).
  10. K. C. Lee, Polymer, 21, 348 (1997).
  11. S. D. Seul, Polymer, 34, 38 (2010).
  12. D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 8, 2617 (1970). https://doi.org/10.1002/pol.1970.150080927
  13. D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 8, 2733 (1970). https://doi.org/10.1002/pol.1970.150081002
  14. P. Ksusch and D. J. William, J. Polym. Sci. Polym. Chem. Ed., 11, 143 (1973). https://doi.org/10.1002/pol.1973.170110112
  15. D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 11, 301 (1973). https://doi.org/10.1002/pol.1973.170110126
  16. D. J. William et al., J. Polym. Sci. Polym. Chem. Ed., 12, 3123 (1974).
  17. R. Patsiga, M. Litt, and V. Stannett, J. Phys, Chem., 64, 801 (1960). https://doi.org/10.1021/j100835a024
  18. L. J. Hyghes and G. L. Brown, J. Appl. Polym. Sci., 5, 580 (1961). https://doi.org/10.1002/app.1961.070051713
  19. M. Okubo, M. Seike, and T. Matsumoto, J. Appl. Polym. Sci., 28, 383 (1983). https://doi.org/10.1002/app.1983.070280133
  20. T. I. Min, A. Klein, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci. Polym. Chem. Ed., 22, 2197 (1984). https://doi.org/10.1002/pol.1984.170220921
  21. M. S. Kim and S. D. Seul, Polymer, 33, 230 (2009).
  22. M. S. Sim, J. E. Ban, M. S. Kim, and S. D. Seul, Polymer, 32, 470 (2008).
  23. T. G. Kim, Ph. D. Thesis, Pusan National University, Pusan (2010).