Transactions on Control, Automation and Systems Engineering
/
v.1
no.2
/
pp.147-152
/
1999
It is an interesting area in the field of artifical intelligence to find an analytic model of cooperative structure for multiagent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent agents solving a pursuit problem in a continuous world. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to find the fuzzy logic controller seems to be promising.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.10
/
pp.3867-3886
/
2015
This article investigates the problem of opportunistic spectrum access in dynamic environment, in which the signal-to-noise ratio (SNR) is time-varying. Different from existing work on continuous feedback, we consider more practical scenarios in which the transmitter receives an Acknowledgment (ACK) if the received SNR is larger than the required threshold, and otherwise a Non-Acknowledgment (NACK). That is, the feedback is discrete. Several applications with different threshold values are also considered in this work. The channel selection problem is formulated as a non-cooperative game, and subsequently it is proved to be a potential game, which has at least one pure strategy Nash equilibrium. Following this, a multi-agent Q-learning algorithm is proposed to converge to Nash equilibria of the game. Furthermore, opportunistic spectrum access with multiple discrete feedbacks is also investigated. Finally, the simulation results verify that the proposed multi-agent Q-learning algorithm is applicable to both situations with binary feedback and multiple discrete feedbacks.
The soccer robot system consists of multi agents, with highly coordinated operation and movements so as to fulfill specific objectives, even under adverse situation. The coordination of the multi-agents is associated with a lot of supplementary work in advance. The associated issues are the position correction, prevention of communication congestion, local information sensing in addition to the need for imitating the human-like decision making. A control structure for soccer robot is designed and several behaviors and actions for a soccer robot are proposed. Variable zone defense as a basic strategy and several special strategies for fouls are applied to SOTY2 team.
Proceedings of the Korean Society of Precision Engineering Conference
/
2001.04a
/
pp.249-254
/
2001
Abstract In this paper, we propose a method of cooperative control based on artifical intelligent system in distributed autonomous robotic system. In general, multi-agent behavior algorithm is simple and effective for small number of robots. And multi-robot behavior control is a simple reactive navigation strategy by combining repulsion from obstacles with attraction to a goal. However when the number of robot goes on increasing, this becomes difficult to be realized because multi-robot behavior algorithm provide on multiple constraints and goals in mobile robot navigation problems. As the solution of above problem, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for obstacle avoidance. Here, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for their direction to avoid obstacle. Our focus is on system of cooperative autonomous robots in environment with obstacle. For simulation, we divide experiment into two method. One method is motor schema-based formation control in previous and the other method is proposed by this paper. Simulation results are given in an obstacle environment and in an dynamic environment.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.166-169
/
2003
Reinforcement learning if a kind of machine learning. It aims to adapt an agent to a given environment with a clue to a reward and a penalty. Q-learning [8] that is a representative reinforcement learning system treats a reward and a penalty at the same time. There is a problem how to decide an appropriate reward and penalty values. We know the Penalty Avoiding Rational Policy Making algorithm (PARP) [4] and the Penalty Avoiding Profit Sharing (PAPS) [2] as reinforcement learning systems to treat a reward and a penalty independently. though PAPS is a descendant algorithm of PARP, both PARP and PAPS tend to learn a local optimal policy. To overcome it, ion this paper, we propose the Multi Best method (MB) that is PAPS with the multi-start method[5]. MB selects the best policy in several policies that are learned by PAPS agents. By applying PS, PAPS and MB to a soccer game environment based on the SoccerBots[9], we show that MB is the best solution for the soccer game environment.
We develop the Multi-Mobile-agents system for realizing effective cooperative task processing in the network environment. In this system, agents are separated / fused by the Place and migrated to another computer. A Place can assign agents to other places by agents migration to be flat the time to execute agents’ action. In this paper, the effectiveness of this system is shown by experimental results applying an agent given simple task.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.170-175
/
1998
Transporting a large table using multiple robotic agents requires at least two group behaviors of homing and herding which are to bo coordinated in a proper sequence. Existing GP methods for multi-agent learning are not practical enough to find an optimal solution in this domain. To evolve this kind of complex cooperative behavior we use a novel method called fitness switching. This method maintains a pool of basis fitness functions each of which corresponds to a primitive group behavior. The basis functions are then progressively combined into more complex fitness functions to co-evolve more complex behavior. The performance of the presented method is compared with that of two conventional methods. Experimental results show that coevolutionary fitness switching provides an effective mechanism for evolving complex emergent behavior which may not be solved by simple genetic programming.
International Journal of Control, Automation, and Systems
/
v.2
no.3
/
pp.333-342
/
2004
This paper presents a framework for the self-organization of swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, multiple agents in a swarm self-organize to flock and arrange themselves as a group using CNOs, which are able to keep a certain distance by the attractive and repulsive forces among different agents. A theoretical approach of flocking behavior by CNOs and a design guideline of CNO parameters are proposed. Finally, the formation scenario for cooperative multi-agent groups is investigated to demonstrate group behaviors such as aggregation, migration, homing and so on. The task for each group in this scenario is to perform a series of processes such as gathering into a whole group or splitting into two groups, and then to return to the base while avoiding collision with agents in different groups and maintaining the formation of each group.
Journal of the Korea Institute of Military Science and Technology
/
v.27
no.4
/
pp.474-484
/
2024
Reinforcement learning, which are also studied in the field of defense, face the problem of sample efficiency, which requires a large amount of data to train. Transfer learning has been introduced to address this problem, but its effectiveness is sometimes marginal because the model does not effectively leverage prior knowledge. In this study, we propose a stochastic initial state randomization(SISR) method to enable robust knowledge transfer that promote generalized and sufficient knowledge transfer. We developed a simulation environment involving a cooperative robot transportation task. Experimental results show that successful tasks are achieved when SISR is applied, while tasks fail when SISR is not applied. We also analyzed how the amount of state information collected by the agents changes with the application of SISR.
KIPS Transactions on Computer and Communication Systems
/
v.9
no.8
/
pp.171-180
/
2020
Smart Factory consists of digital automation solutions throughout the production process, including design, development, manufacturing and distribution, and it is an intelligent factory that installs IoT in its internal facilities and machines to collect process data in real time and analyze them so that it can control itself. The smart factory's equipment works in a physical combination of numerous hardware, rather than a virtual character being driven by a single object, such as a game. In other words, for a specific common goal, multiple devices must perform individual actions simultaneously. By taking advantage of the smart factory, which can collect process data in real time, if reinforcement learning is used instead of general machine learning, behavior control can be performed without the required training data. However, in the real world, it is impossible to learn more than tens of millions of iterations due to physical wear and time. Thus, this paper uses simulators to develop grid sortation systems focusing on transport facilities, one of the complex environments in smart factory field, and design cooperative multi-agent-based reinforcement learning to demonstrate efficient behavior control.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.